A089 935 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
SUBVERSION? THE NEGLECTED ASPECT OF COMPUTER SECURITY,(U)
JUN 80 P A MMYERS

JNCLASSIFIED
e

"“ |.O 5 ke iz
== 1 |32
= [2
o,
Il

o

23 Jiie pee

MRROCOPY RESOLUTION TEST CHART ‘
NATIONAL BUREAUL OF STANDARDS 1963 A

T

i EA e S e S rirrndia
s e e ey e 3 i 2 iSRS I
i g
‘} » o /
et 4 L
14
“ ?."l':

NAVAL PUSTGRADUATE Sﬂllﬂﬂl

Monterey, California

ADA0D89935

DTic

™ELECTER

E\.;'

‘oxoma 1980 3

: | THESIS “ A

- @f SUBVERSION:
THE NEGLECTED ASPECT OF COMPUTER SECURITY,

(o
—
P

e by
Phillp A&/Myers

/
Wt
{//f“Junc-losg’f
Thesis Advisor: Roger R. Schell
R
Approved for public release; distribution
Unlimited
>
B A S
Tt .
' ST O
TR T——

Unclassified
SECUMTY CLASMMCATION OF THIS PAGE rThan Date Bntered)
REPORT DOCUMENTATION PAGE ..;23&;2;ﬂg;xn§,.
T REPSRY wuuBEN GOVT ACCENSION 0] T RECIPIENT'S CATALOG numMBER
AV Ao A%
4. TITLE (and Subiitte) 8. TYPg OF AEPORT & PEMOD COVERED
Subversion: The Neglected Aspect Master Thesis; J“niggo
of Computer Security 4. PENFOMNNG ONG. AGAORT NUNBER
| LT L) D, CONTRACY OR SRANY nunbEN e
Lt. Philip Alan Myers, USN
R ERPORING GRGANIZATION AT AND ACOREN ~ GRaSRan ELERENT FROIECY T ASK

Naval Postgraduate School
Monterey California, 93940

11. CONTROLLING OFFICE NANE AND ADDRRSS 13. REPONRY OATE
-)) \M
. Naval Postgraduate School 15. NUMBER OF PAGES .
: Monterey, California, 93940 113 1
‘ T MonIT0 o'l'T'%'lT__m ACENCY %and & ADCATINIT Witorant from Contoalling Offise) | 18. SECUMTY CLASE. (of thie ramers) 1
! i
: i Naval Postgraduate School Unclassified
- Monterey, California, 93940 FosugicaTion GRADING

IS DISTRIBUTION STATEMENT (of this Repart)

! Approved for Public Release; Distribution Unlimited

17. OITMBUTION STATENENT rof the sasrrasr entered in Dlock 30, 11 diffarent iram Repert)

1. SUPPLENENTARY NOTES

1% X2y wORODS (C on roveres otde I ary and idontily by blosk number)

subversion, protection policy, trap doors, Trojan horses,
penetration, computer security, access control, evaluation criteria

protection systems, leakage of data, security kernel

(20. AGSTRACT (Continue en olde i wy and (danily by bloek mumber)

;>This thesis distinguishes three methods of attacking internal
protection mechanisms of computers: inadvertent disclosure,
penetration, and subversion. Subversion is shown to be the most
attractive to the serious attacker. Subversion is characterized
by three phases of operations: the inserting of trap doors and
Trojan horses, the exercising of them, and the retrieval of the
resultant unauthorized information. Insertiion occurs over the

DD , 5% 1473 cormiow 07 1 wav 08 18 sesOLETE - ,‘{4)
(Page 1) /0 0102°016-0001 - | sn'i! !l"! &i !g .

- | TR . - T -
t J a ' . '"‘. 1‘4& ;;x?‘(;)

- Wy
, ..
: - —— ield
+ . . - - . ‘. ‘-

£

P o R e

¢

Unclassified

. M
[CUMPY & 0@ & P @F Tuit P agENen Neeg Dateme: .
S

~

L,-entire life cycle of the system from the system design phase to
to the to the production phase. This thesis clarifies the high
risk of using computer systems, particularly so-called 'trusted'’
subsystems for the protection of sensitive information. This
leads to a basis for countermeasures based on the lifetime
protection of security related system components combined with
the application of adequate technology as exemplified in the
security kernel concept.

,{

ormy,. 1473
3 %
S/ P} %“3"014-“01 SEEUMTY CLAIRMISATION §F TG PAGEThon Bate Bnieses)

LA et
. -

& v

-
.

Approved for public release; distridution unlimited

Subversion:
The Neglected Aspect of Computer Security

by
Philip A. Myers
Lieutenant, United States Navy
B.S., North Carolina State University, 1973

Submitted in Partial Fulfillmeat of the
Requirements for the Desree of

MASTER OF SCIENCE IN GOMPUTER SCIENCE

from the

NAVAL POSTGRADITATE SCEOOL
June, 1980

| : Kuthor: %,ép 4. 7774/_4_4{ LT UK

Approved bdy:

Thesis Advisor

P

Dean of Informa{ézn and Policy Sciences

'~ -T !I!.-‘.'u' IR . o

AESTRACT

This thesis distinguishes three methods of attacking
internal protection mechanisms of computers: inadverteant
disclosure, penetration, and subdbversion. Sudversion is shown
to be the most attractive to the serious éttacker.
Subversion is characterized by three pnases of operations:
the ipserting of trap doors and Trojan horses, the
exercising of them, and the retrieval of the resultant
unauthorized i{nformation. Insertion occurs over the entire
life cycle of the system from the system design phase to the
production phase., This thesis clarifies the high risk of
using computer systems, particularly so-called “trusted’
subsystems for the protection of semsitive informatior. This
leads to a basis for countermeasures dased on the 1lifetime
protection of security related system components comdired
with the application of adequate technolozy as exemplified

in the security kernel concept.

TABLE OF CONTENTS

I. . INTRCDUCTION

II. UNDERSTANDING THE COMPUTER SECTURITY PROBLEM -——-ee-ee= 13
A. IACK OF COHERENT POLICY 18
t B, INADEQUATE INTERNAL MECHANISMS - 18
; C. FALSE ASSURANCES 21
% ; 1. RPeliance on “Trusted” Subsystems 22
A 2. No Lifetime Protection 24
' L. CFAPTER SUMMAFY - 25
‘ IIT. YETHODS OF ATTACRING INTERNAL
SYSTEM CONTROLS 27
A, INADVERTENT TLISCLCSURE -- - -27
B. PENETRATION - 29
; | 1. Penetration Enviornment 3e r
‘ ' » 2, The Penetrator 31
i : C. SUBVERSION z2
b 1. Subversion Over a System Life cycle cemmen33
! 2. Skills Required 3¢
| 3. Tue Artifice : L
a. Trap Loors 36
b. Trojan Forses 37
D. CEAPTER SUMMARY SE
METPODOIOGIES OF SUBVERSION ==———ecccccccccncccnnenaaa 4¢
A. GENERAL CONSIDERATIONS --=42
1. Safe Computing Sites 41
e}

2. Scope of Operations 42

2, Desirabdble Traits in Artifices 43

a. Software trap doors &2

(1) Compactness 43

(2) Revision Independence ~—————td

(3) Installation Independence 44

(4) Untracatle -4t

(5) Uniquely Triggerabdle 45

(5) Adaptibility —~——mecemccccccccnc e e na—— 45

b. Trojan horses 45

(1) Directed Lure -- 46

(2) Compatidility of Functiorns - <6

¢. Fardware Mechanisms &7

4, Obscuring Artifices 47

a. Modifyine Object Code —————— 48

b. Abusing Software Engineering Practices -===—- 439

€. Using Assembtler Langzuages 51

' d. Strategic Placement 52

i e. Using Confinement Channels - - 53

e f. Rardware Obdscuring 54
! B. INSERTING ARTIFICES OVER TEE

' LIFE CYCLE OF A COMPUTZR SYSTEM £5

‘?% 1. Desisn Phase 56

- a. Operating System Software — &7

; (1) Password Procedures 57

(2) Audit Procedures S8

S e e e el

(3) Confinement Channels 59

(4) Eackvard Compatitle Features ==—cw——ec-c-- 6¢

b. Other Software Design Choices €1

c. Fardware Alternatives €2

(1) Central Processors - 62

(2) Peripherals a1

2. Implementation Phase 66

a. Coding and Testing - ee

b. Hardware Assemdly and Checkout ~===—==--=-===§§

3. Distritution Phase - e

4, Installation Phase - - 72

5. Production Phase -- 73

6. Summary - 786

u C. EXEZRCIZING ARTIFICES 77
1. Activating Artifices 7 1

a. Software Activation a4

3 (1) Trojan Horses -- - 7

E (2) Trap doors --—-- - 7e

‘% b. Hardware Activation - - 79

éi 2. Techniyues of Zxploitation e

'é a. Breaking Out of a Subdsystem ee

iy b. NFS Penetration Case €2

f ; c. Using Emitters - - az

3 d. Memory Residue - - 24

E * e. Using Cenfinement Channels —— g6

f. Affecting System Performance e

T. RITRIEVING INFORMATION -- oS¢

1. Retrievine Files oS¢

2. Retrieving with Hardware Levices 51

P. CEAPTER SUMMARY 92

¥. MINIMIZING TEE RISK OF SUBVERSION - 94
A. RESTRICTING INSERTION OPPORTUNITIES --- 5S4

1. Lifetime Protection 35

2. Appropriate Protection Policies 96

B, RESTRICTING ZXERCISING OPFORTUNITIES -~ g&

C. RESTICTING TFE RETRIEVAL OF INFCRMATION ---==--=<-=39

1. Delineating the Internal Security Perireter ---120

2. Security Kernel Concept 1¢2

D. CHATTER SUMMARY - 104

VI. CONCLJISICNS ANT RECOMMENTATICNS —— 1¢6

LIST OF REFERENCES -=-—-—=eem——m—m— 1¢9
INITIAL DISTRIZUTION LIST - - 112 5

™

HIRA= s i SO ~Gpini ¥ ity Lt bkl i bl 5 A sisncs Xl R i B e
e itk - (e g - o2 S i . o AN
_

e »
e 2 14 .«4--1.1;?(.*:«‘%— 9

ACENOWLEDGEMENT

I would 1like to thank my thecsis advisor Lt. Col. Roger
R. Schell, USAF, for the many hours he has spent ir helpine
me to understand the relevent issues involved in computer

security.

S p———v

I. INTRODUCTION

To use internal mechanisms within a computer system to
protect sensitive information without demonstrabdle
assurances as to the origins and effectiveness of the system
components is contrary to a sound security practice. Use of
allegedly ‘secure’ or “trusted” sudbsystems based on
operating systems that are fundamentally unsecurable 1is
lixewvise unsound. Yet these two conditions can, and do,
exist within the constraints of current ADP security policy
and practice. As a result, supposely ‘secure’ computer
systems present a major risk of ccmpromise for sensitive
information.

These conditicens can exist because there is a basic lack
of understanding as to the possible vulneradilities of
computer systems. In particular, subversion is one area that
is widely negzlected. The subversion of a computer system is
the covert and methodical undermining of 1internal and
external controls over a systems lifetime to allow
unauthorized and undetected access to system resources
and/or information.

This thesis details the methodologies involved in
subversion, and how they can de used to attack a computer

system, It is essential that all personnel involved in ADP

10

security understand subversion and how it works. Without
this understanding, effective policies and countermeasures
cannot be devised and implemented.

The 1increased use of ‘off the shelf” ANP systems and

programs can help realize significant economies in

‘ procurement costs, bdut there are significant dangers as
vell, These dangers come about because there is a pressing
need for computer systems to ‘securely support multiple
users of differing degrees of trustworthiness simultaneously
handling data of differing degrees of sensitivity’. This 1is

known as the classical computer security prodlem (1]. It is

a problem dbecause no known commerclially avalladle system can
be proven to offer the secure Support required.
Present technology such as that found in the Security

Kernel (2] concept point the way to a solution to the

computer security problem, But no technology will assure

i secure computer systems unless proper safeguards are
implemented to protect this technology from subversion.

To understand what is 1involved in the subdbversion of

computer systems one must first bde aquainted with the

o ——— ey 4. e

; ; (background of the computer security prodlem (Chapter II).
% The problem 1is not merely a historical one. There is
currently nc clear policy as to what role computer systems
are to play in the protection of ianformation. AS a result,
systems are plagued with inadequate internal protection

mechantsms whose effectiveness cannot de assured. Chapters

11

II1 and IV deal with how these inadequacies can de exploited

through sudbversion. Finally Chapter V discusses how the risk
of sudversion can be minimized.

12

I1. UNDERSTANDING THE COMPUTER SECURITY PROELEM

The computer security problem has grown with the

computer industry. When the entire system was dedicated to a

sinzle user, protection consisted of the user Simply picking

up his tapes and cards and clearing CPU core when the Jjob

was fintshed. Basically the user had complete control over
his processing environment, including his data and programs.
After a few years users began demanding bdetter utilization
of the resources., The response to this demand for more
efficiency gave bdirth to multiplexing techniques, resource
sharing operating systems, multiprogrammingn_pnq_”ygyious
other techniques of the age. The user Qﬁddenly found n;i

only a lack of control over the processing environment bdut a

lack of control over the protection of his data and programs

as well, Cat (3] indicates:

vitk the appearance of multiplexing techniques there arose
the prodlem of defending independent software structures
from each other, as these were often implemented on the
same physical resource. Thus, multiprogramming operating
systems enforce some sort of isolation between
simultaneously executinz processes.

Since efficiency was the main consideration in computer
systems design, criteria limited the ‘defending” and

‘4solation’ to the containment of accidents and errors [2).

13

Organizations desiring to utilize the increased
capacities of resource sharing systems demanded assurances
that sensitive and nonsensitive information could Ye
processed concurrently. Bisbey (25) comments:

Responding to customer pressure, the systems manufacturers
at first claimed that hardware and software mechanisms
supporting resource sharing would also (with perhaps minor
alterations) provide sufficient protection and isolation
to permit multiprogramming of sensitive and nonsensitive
programs and data.

This claim was soon discounted in the early 1970°s with
the introductlion of several penetration tiger teams that
were specifically tasked to test the protection offered oy
several major operating systems. Even those systems that
undervent ‘retrofitting” to correct known implementation
errors and design oversights vwere ©penetrated with only
moderate amounts of energy (1]. Evidence as recent as 1978
indicates that current operating systems for which the major
vendors have “conscientiously and competently attempted to
improve security’ have been successfully penetrated (1].

Finally, as a crowning blow to the state of current
computer systems, a Consensus Report pubdlished in the
proceedings of the 1979 National Computer Conference (1]
states:

It is a fact, demonstradble dy any of several studies, that
no existing commerically-produced computer system can bde
counted upon to protect any of its moderately knovledgadle

users from having complete and undetectabdle access to any
information in the system, no matter what kinds of

14
AR T
A‘“a‘.‘.; .

'\y-" g

- ———— . o

so-called security features or mechanisms have been built
into the system.

Barrison, Ruzzo, and Ullman in their paper ‘Protection
in Operating Systems’ [4] provide conclusive proof that
there is no algorithm that can prove an arbitrary protection
system (such as aa operatiag system) safe. This means 1t
cannot de proven that an arditrary operating system can
withhold vnauthorized information from malicious users. This
1s bdecause a system may not be (and usually 1s not) designed
in a manner that 1ts safety can be precisely determined.
However, for a properly designed system the safety question
could bYe decided. But, the constraints placed on these
‘model”’ systems are too severe to prove practical for the
evaluation of current operating systems. In particular,
systems designed using the security kernel technology (3]
can bYe defipitively evaluated for security. This technolozy
wvill bde driefly discussed in Chapter V.

It has been said that understanding the computer
security problem requires close atteation to three sutjects:
policy, mechanisms, and assurance [1]. It 1s essential to
understand all aspects of the probdlem. Therefore, a bdrief

discussion of each area is offered.

A. LACK OF COHERENT POLICY

In general, a security policy defines what is meant bdy

‘cecure’[5). The sources of this policy are laws and

15

W A e s AN LA g Wooner |

regulations that outline how information is to bde handled.
The computer industry in general, doth users and vendors,
have not reached a consensus as to what would constitute a
coherent approach to computer Security policy. The Consensus

Report [1] indicates:

This passive attitude on bdoth sides tends to mask the
general nature of the security prodlem dacause the more
knowledgeadle security users demand solutions to their
unique prodlems, solutioas that might not decome standard
parts of a product line,

DOD fairs better in having a more specific policy as to

the handling of sensitive information 1in general. This
policy invelves a non-discretionary (or mandatory) access

control and within these contraints a discretionary control.

When information is given a formal security
classification, it is forbidden without explicit
administrative declassification or downgrading to allow
someon® to have access to information of higher
classification than he 1s cleared for, i{i.e., the holder of
classified information bhas no discretionary authority 1in
this respect concerning wvho he can share {t with. This
fu%e is an example of a mandatory access control policy
1].

Within the mandatory constraints there exists a

discretionary 9policy that allows the creator of the
information discretion over access to the information by
other cleared personnel. This 1is the concept of ‘need to
know’. A person must have the clearance (mandatory) and a
need to know (discretionary) bdefore access to information is

granted,

16

~ oo T

e T

-

S o Sl T bl

However in the area of sensitive information as {t
relates to the computer, guidelines, such as those outlined
adove, are less clear. Policy does not clearly discriminate
bYbetveen a computer providing only computation and one
providing bdoth computation and protection [€].

In a simple computation environment, protection or
security 1s eanforced by physical means extermal to the
computer (ferces, guards, etc.) as in a ‘dedicated’ mode of
operation. In this mode, all users allowed access to the
system are cleared for the highest level of information
contained in the system (i.e. 1t is dedicated to processing
at a pgiven Security level). All users, equipment, and
information reside within this oprotective Yboundary or
‘security perimeter”. Everything within the security
perimeter is considered benizn. The computer system §{s not
expected to seriously °‘defend” information from amny of its
users because they are considered non-malicious by virtue of
thelr security clearances.

In the other environment (called the multilevel security
mode) the computer not only provides computation but must
internally provide mechanisms that distinguish levels of
information and user authorization [6]. This is because not
all users of the system are cleared for the highest level of
information contained 4in the system, Here, the computer
system must protect the information from the uncleared (and

possidly maliclous) user. In effect, the computer system

must dbecome part of the security perimeter. The internal
protection mecharnisms (wvhatever they may bde) must “assume
the role’ of the guards, fences, etc. that are indicitive of
the exterral security perimeter. Policy (which defines what

is meant by ‘secure’) must de clearly translated into terms

that can be implemented on a computer. Unless a specific
policy {s required to de implemented on & computer system in
a VERIFIABLE manner, there woﬁld bYe no way one could
determine if the computer system was EFFECTIVE ia enforcing
the given policy.

P. INADEQUATE INTERNAL MECHANISMS

The bdaseline documents within DOD for ADP security are
DOD Directive 52¢2.28 ‘Security Requirements for ADP
Systems’ (7] and its associated Manual DOD 5299.28M ‘The ADP
Security Manual’ [€]. The Directive states that “techamiques
and procedures which can te used to secure and evaluate
resource-sharing ADP systems’ are contained in the ADP
Security Manual. Therefore, it is instructive to
specifically address the Manual.

Since the central issue of a multilevel security system

concerns the use of 4{nternal protection mechanisms to
enforce protection of information, it 1s important to

understand wvhat these mechanisms are.

18

The folloving are selected excerpts from the Manual that
illustrate the offically anmnnunciated role of internal

sof tware mechanisms:

4-320 General

The user and master modes of ADP Systems operation shall
be separated so that a program operating in a user mode is
prevented from performing control functions.

4-3¢1 0/S Controls

t The 0/S shall contain controls which provide the user with
all material to which he s authorized access, dut no
i more.,

4-3085 Other Fundamental Features

eeses Unauthorized attempts to change, circumvent, or
othervise violate these features should be detectadle and
reported.... In addition the incident shall bde recorded in
the audit log....

a. Memory/Storage protection - The operating system shall
protect the security of the ADP system by controlling:

1. Resource allocation (including primary and
auxiliary memory);

2. Memory access outside of assigned areas; and

3. The execution of master (supervisory) mode
1:st{ucg}gns which could adversely affect the Security
of the .

}' b. L N 2

¢. Access Controls - AccesS to material stored within the
ADP System shall bde controlled dy the ADP system security
officer, ..., Or DYy automatic processes cperating under
separate and specific controls within the 0/S estadlished
through hardware, software, and procedural safeguards
approved by the ADP System security officer.

Lo : de uee

‘F s o0

f. User identification = Where needed to ayéure control of
access and individual accountabdility, -each user or

specific group of users shall be ideatified to the ADP
system bdy appropriate administrative or hardware/ softvare
measures, Such {identification measgres must be in
sufficient detail to enable the ADP.-system to provide the
user only that material which he is‘authorized.

These seem to be reasonable rgiﬁirements to ask of a
multilevel security system. Tbé’problem is that there is no
wvay that these requirements,e;n be proven effective. They
can only bYe proven inef’ective. This is evident in the ADP
Security Manual’s ad-bdé method of Security Testing and
Evaluation (STSE). An evaluation 4is defined in paragraph

1-213 of the manual:

The evaluator’s report to the Designated Approving
Authority descriding the investigative and test procedures
used in the analysis of the ADP System security features
with a description and results of tests used to support or .
refute specific system wveaknesses that would permit the
acquisition of 1identifiadble classified material from
secure or protected data files.

Verification is defined in paragraph 1-225:
The successful testing and documentation of actual on-line
system penetration or attempts to pemetrate the system 1in
support or in contradiction of assumptions developed
during system review and analysis which are to bde included
in the Evaluation report.

The above methodology is fundamentally flawed. Recall
from mathematics that it s sufficient to d4aisprove a
proposition (e.g., that a system is secure) by showing only
one example wvhere the proposition 1is false (e.g., a
successful penetration). It is not sufficient to prove. the

proposition bdy offering an example where the proposition

20

appears to hold (e.g., unsucces$ful penetration attempt).

The best position to take concerning these methods is stated

by Schell [6]1:

Do not trust security to technology unless that technology
is demonstrabdly trustworthy, and the adsence of
demonstrated compromise 1is NOT a demonstration of
security.
It 1s imperative that any mechanism that will |De
required to aid in the securing of a computer system bYe
constructed in such a way that it can, in fact, be verified

effective.

C. FALSE ASSURANCES

False assurances concerning the reliabdility of computer
systems to effectively protect 1information come about
tecause peovle in positions of responsidility do not
understand that a “technical computer security’ prodlem

exists,

«ssssZOovernment agencies, as well as private industry,
continue to 1issue purchase requests containing sections
ladteled “security requirements”’, which are mostly lists of
features and mechanisms, in the apparent delief they will
odtain something useful (1].

The previous section’s discussion on policy illustrated
hov the reliance on ‘features and mechanisms” without

demanding demonstradle effectiveness can lead to false

assurances.

L —— g NS —— -

No self respecting computer system salesman i{s goine to
admit that his products cannot provide the effective
protection that an application demands. No malicuous {ntent
is implied by this statement, dut the salesman is no more
aware of the true nature of the computer security prodlem
than the customer vwho unknowingly demands the ineffective
‘features and mechanisms’ in & procurement specification.
The Comsensus Report [1] demonstrates this 1lack of
understanding:

essssven if government procurement specifications wvere

tightened to ask for the kind of security we believe
possidble with the current state of the art, fewer than
fifty people in the country would understand the true
implications of what is being asked for, and those fifty
are concentrated ir less than a half-dozen organizations,
none of them in the main stream development orzanizations
of the major mainframe vendors. This is partly because at
the moment most efforts of vendors relating to security
are concentrating on the ‘mechanisms’ part of the security

protlem, with very 1little attention to the “assurance’
part.

1. Reliance on ‘Trusted’ Subsystems

A subsystem can bde vieved as any computing
environment that restricts the users functions to a subdbset
of the host cohputer's functional capabdilities, An example
of this i{s a transaction data management system. The user {is
bound to a restricted ‘menu’ of functioms that allow him to
carry out only his required tasks. For instance, a data
entry clerk in such & subdbsystem has no need to write

programs, so this capadility is not part of the clerk’s

22

- -

e sty F——

——

meru. The general feeling adout sSubsystems {is that by
restricting the users capabdilities, he will dYe denyed the
‘tools’ he needs to perform malicious activities.

Alleged ‘secure’ or ‘trusted’ subsystems are
presently bYeing developed within DOD as a means of coping
with the computer security probdlem:

Given an untrusted operating system, this approach employs
the use of a trusted transaction data management system or

other trusted special-purpose sudsystem in concert with
facility and procedural constraints that limit the
population of wusers to the trusted subdsystem. (Only
trusted users are allowed access to any parts of the
system outside of the trusted sudsystem.) This sclution

comdbines trusted software (but not the operating system
ftself) and trusted procedures, and is an expedient until
completely trusted operating systems are more widely
avalladle, Secure subsystems development for the DOD in
%1T1ted transaction applications 1is currently underway
1].

Unfortunately one cannot exclude the operating
system from the “solution’ as proposed in the abdove. All
subsystems are ‘built’ upor an underlying operating system.
The operating system must therefore bde considered as an
integral part of the trusted sudsystem.

Ample discussion has already been offered as to the
unreltability of current operating systems. A subsystem,
vhen viewed from the aspect of the underlying operating
system, is nothing more than another application program. If
there are exploitadle flaws in the underlying operating
system that can be used to exploit the system without the

sudbsystem, then these same flaws can be used to exploit it

a3

with the sudsystem. Chapter IV demonstrates how this can bde
done. Rellance must not be put on a “trusted” sudsystem
unless the foundation onm which 1t is built is solid and

trustvorthy.

2. No lLifetime Protection

There 1s no explicit Security Testing and Evaluation
(ST&E) criteria in DOD guidlines that takes into account the
history of system components. USing computer systems with
uncertifiable dackgrounds, particularly in miltilevel
security mode applications, can prove particularly
disasterous. The main thrust of this thesis is concerned
with Just such issues. The lifetime of a computer system is
not Jjust the operational lifetime, {.e., when it zomes under
the control of an ADP security officer, dut is from
‘conception until death’. This includes the desien,
implementation, distribution, installation, and production
phases of a computer system.

It 1s not sufficient to know that a given computer
system and its associated software are standard ‘off the
shelf’ versions of company XYZ°s product 1line. ¥Without
specific assurances concerning the protective measures that
have bdeen afforded system components or the trustworthiness
of development personnel, there {s nc way that an effective
evaluation can occur. If at some time prior to the user

taking control of a system, malicious elements have access

24

Mr A smcetm et~ - .

S -

to system components, 1t would be virtually impossible to
determine what modifications to invalidate security controls
vere made. Thls lack of protection is one of the fundarental
reasons why the subversion of computer systemS can bYe SO
effective. later chapters will amplify this concept.

It has bYeen proposed [1,9] that current operating
systems be evaluvated as to thelr security attridbutes. The
result of this evaluation would yield an ‘approved products
1ist’. The resulting ‘grade’ that a system would receive
wvould supposedly determine its relative ability to protect
information. There is a problem in that this criteria does
not substantivally address whether or not the security
related components (hardware and software) have received the
proper lifetime protection from maiicious elements. Unless
this vital factor has been taken into accourt, any “aprroved

products 1ist’ would prove meaningless.

D. CHAPTER SUMMARY

It has been the purpose of this chapter to aquaint the
reader with the background of the computer security prodlem.
This problem has been aggravated by a general lack of
understanding as to the true nature of the computer security
prodlem by those responsidle for its solution., This has led
to a reliance on inadequate internal mechanisms, and false

assurances as to their effectivenss. It is importanmt to

28

PO TP - g -
:) . o 0
' W - , i o e ki e 1 it

© e e m——

understand this background because it serves as a backdrop
with which to

principal topic

view the subject of computer subversion, the
of thls thesis.

26

- — e A - ©

-

A — e, A

III. METHODS OF ATTACKING INTERNAL SYSTEM CONTROLS

There are three methods of attacking internal system
controls imn computers. They are are by inadvertent
disclosure, penetration, and subdversion. Each method is
triefly discussed. Later chapters will develop the details
involved 1in penetration and subdbversion. Distinctions are
made between the current concept of penetration and the

concept of sudbversion.

A. INATCVERTENT DISCLOSTRE

Inadvertent or accidental disclosures are basically
probadbilistic in nature. They may involve a comdiration of
human, hardware, and timing factors that when combtined could
allow a disclosure of information to an unauthorized user.
Simple examples of this method are a computer operator
inadvertently mounting the wrong tape, or the hardvare
failure of memory bounds checking mechanisms. Users
receivine information from this kind of disclosure are often
victims of circumstances and may not be malicious in their
intent. Eowever, even though the success of this method
relies on prodadilistic events that one cannot control, it

can bde utilized dy the determined attacker.

The basic approach used dy an attacker in this method is

to sit and wait for the proper set of circumstances to

occur, Upon detection of a bdreach in the protection
E mechanism, the attacker would take appropriate actions to

exploit the dreach.

' This method was addressed 1in the Multics Security
’ Evaluation ([12]. A program called the ‘subverter’ was
written to run in the Ybdackground of an unprivilepced
interactive process. Once each minute the subverter rprogram
received a timer interrupt and performed one test from a
group of functions that would sample the inteezrity of the
security sensitive hardware., These tests included:

1. Testing master mode instructions.

2. Attempting to violate read and write permission on

segment access control lists.

= et 4 55 A~ e

3. testine of all instructions marked {llegal.
i 4. Taking out-of-dounds faults on zero length segments.

Methods similar to those above could prove profitadle to

- ——

a malicious user, particularly if the system under attack

l had a history of questionadble hardware reliadility. Although

————

this method 1s a viabdle attack method, other methods will bde

3 ' discussed that do not rely on these oprodatrilistic

circumstances.

28

2R . g -

o

eab s e

et — Ay

B. PENETPATION

There are three major characteristics to penetration:

1. The penetrator is deliberate in his attempts.

2. The penetrator uses system foitles ¢to circumvent

system controls.

3.. The methods are repeatable under the control of the

penetrator,

It is important to realize that the penetrator 1is
deliderate in his attempts. This is because it introduces a
class of “user’ that contemporary computer system designers
had not seriously considered. Designs reflect that the
systems are expected to operate in a ‘denign environment’
where violations of the system controls are presumed to de
accidential ([2]. Because systems are presumed to be in a
benign environment, the attacker does not have to exert much
effort in his penetration attempts.

The second characteristic 1involves the utilization of
system “foidles’. Lackey ([11] defines the term:

A foidle is an accidental or unintentional opening that
permits unauthorized control of the system or unauthorized
access to information. It car occur in either hardwvare or
software, dut software penetrations are more common. A
system programmer may inadverteatly allow an obdscure
condition to occur for which no check is made, or accept
parameters without adequate checking. Often the programs

pass acceptance tests that don’t expose these ancmalies,
and the program will work properly when used as intended.

29

— -

e ———— gy - PAB—— A

- ——

Jhes/Ainny

Foidbles that can be used dy a pemetrator to circumvent
system controls come adout because most computer designs for
both software and hardvare consider efficiency and
convenlence as primary factors rather than security.

The methed is repeatadle decause the foidle is a part of
the system design or implementation. The penetrator cam use

it as though it were a “special feature’ of the system.

1. Penetration Fnvironment

The penetrator carries out his malicious activities
by usine the computing (or rather the peretration)
environment “as 1s”. That is, he is content to exploit the
system usinge those foibdles that the desigrers and
implementors inadvertently provided. But since delibderate
penetration utilizes sSystem weaknesses or foibles, the
penetrator may have his “access” routes cut off if the
fallidbility 1is discovered by a legitimate user or system
maintenance personnel. Fowever as indicated by lLackey, since
the error was not detected during testirg and the system
vorks properly when used properly, thls appears to bde an
effective method for gaining unauthorized information.

This 1s supported bdy reviewing the literature
concerning computer crimes. Many of the criminals wvere not
caught by the discovery of their penetration method or even
in the actual act, dbut dy some foolish action on the part of

the criminal after the fact (e.gz., high living on emdezzled

3@ .

e Rl AU —— T ST

P PN

T

funds). Orly through subsequent 4{nvestigations did the

foibles become known to the victims.

But this enviromment, although 1lucrative, is not
under the ‘control’ of the penetrator. Foidles could be
discovered and corrected or procedural deficiencies revised.

The determined penetrator would undoubdbtedly desire an

environment that is more wunder his control and not as
susceptadle to change and possidle detection by external

forces.

2. The Penetrator

Current conceptions of computer system penetrators as
glamorized dy the newspapers and other popular 1literature
would have one Yelieve the the penetrator 1{s a highly
technical 1individual such as a programmer or computer
scientist. This {s a misconception. Several studies have
showvn that the a more accurate conception of the average
penetrator is that:

1. Ee possesses ocnly a limited technical knowledge of
" the computer system [12].
2. Ee is a ‘white collar amateur’ (13].
3. He {s a user of the system, not the professional that
supports the system (12].
4. He lacks the adility to think dig [14].
But all these conceptions of the known penetrator

reflect the same thing: that these conclusions are dased on

31

—————

. erme—e e .

on the amateur that got caught. They say nothing abdout the
malicious elements that were sophisticated enough to avoid
detection. It is this group that poses the greatest danger
to the security of computer systems. What is the nature of
the penetrator that was not caught, and how might he proceed
in his malicious endeavors? It 1s imperative that these

questions be addressed.

C. SUBVERSION

Recall from chapter I that sudversion of a computer
system involves the covert and methodical undermining of
internal and exterral computer system controls to allow
uznauthorized and undetected access to computer system
resources and/or information. But to understand the real
implications ¢f this definition, further amplification 1is
required.

Subversion is characterized by the following:

1. It can occur at any time in the life cycle of a
computer system.

2. It 1is wunder the control of highly skilled
individuals.

3. It utilizes clandestine mechanisms called artifices
deliberately constructed and inserted into a computer
system to circumvent normal control or protection

features.,

32

——

Each of these characteristics will de introduced in the
following sections. The detailed methodologies of subversion

are discussed in the next chapter.

1. Subtversion Over a System Life Cycle

Sudversion is not limited to on-site operations, as
in the case of deliderate penetration. It includes
activities that spread over the entire 1ife cycle of a
computer system, This life cycle includes several phases:

1. Design~ The deginnings of a system. All key decisions
concerning the software and hardware specificationes are
made during this phase,

2. Implementation~ The conversion of the desigzn into a
usabdle product. This includes manufacturing and testing
of hardware components, and the coding and testing of
softwvare components.

3. Distridbution- After all system components have Yeen
produced and tested, they are distributed to the various
operational sites.

4. Installation-~ Upon receipt of new System components,
these components must bde installed and made operational.
These components might be new software on old equipment,
or 0ld software on newv equipment, or any comdination of
the abdove.

5. Production~ This is the operational phase of the

computer system and is the phase that has traditionally

received the most security considerations. This
consideration is ©bYecause of the presence of the
sensitive information that 1{s the obdject of the
sudbverters efforts.

The legitimate activities that are carried on during
the various life cycle phases offer ample opporturities for
the sudverter to undermine system components. The activities
in the ¢first four phases are basically not sensitive in
nature and are carried out at relatively open facilities.
Therefore, the subverter would have 1little difficulty in
subverting the system components under development. later in
the production phase, these same components would be
involved in the protection of information. By this phase the
subverter would have an ‘environment’ purposefully
constructed for the unauthorized and undetected exploitation
of a2 system and the information it contains. The next
chapter will ocutline possidle activities that can de carried

on by a sudverter during each of these life cycle phases,

2. Skills Required

The subverter, unlike the penetrator, is not an
amateur. To dbe adle to carry out sudversive operations, the
sudbverter must understand the activities that are performed
during the various phases of a computer system’s life cycle.
But none of these activities are beyond the skill range of

the average undergraduate computer science major. In fact,

34

TTTIIRET T

o el i N i

B e

- ——————

- -

- —— sy + P ———

A

.-

much of the activity involved with subversion can de carried
out by 1individuals of much 1less technical knovledge.
Sutversion can bYbe particularly effective as an organized
effort that need only bYe CONTROLIED by the technically
qualified.

The <ubverter, unlike the penetrator, does not lack
the ability to think dig. He canm utilize a diverse group of
individuals that may or mav not de avare o? the subversive
activities they are performing. One need only 4imagine the
vast numdber of people that will have access to the various
corputer system components prior to their deing delivered to

the control of an unsuspecting ADP security officer.
2. The Artifice

The subverter could, and undoubdbtedly would, use
various methods to circumvent the control features of a
computer system, includine the foidle that i{s indicitive of
the penetrators environment. But the subverter is concerned
with the longz term return or his sudbversive efforts. To rely
on & design oversight or an implementation flaw that might
be eventually corrected would not bde a sound ‘dusiness’
practice. Rather the subdbverter constructs his own mechanisms
that are inserted into the hardware or software 2uring one
of the various phases of a computer systems life cycle. Any
clandestine mechanism that is used in subdbversion s called

an ‘artifice’ [11). These mechanisms can be implemented in

35

Yo e s ok e

Ae e

-

-

ei{ ther hardware or software. The most common forms of

artifices are known as trap doors and Trojan horses. A
hardware artifice is a particular instance of a trap door.
a. Trap Doors
The key characteristics of a trap door are:
1. It 1s exercised under the direct control of an
activation stipulus.
2. It circumvents the normal control features of a
system.

As the name implies, trap doors have a means of
activation (lixe the latch on a door). This activation key
is under the direct control of the attacker. A Simple
example of an activation key 1is a special sequence of
characters that is typed into a terminal. A sSoftware trap
door program, i{mbedded in the operating system code, can
recognize this key and allow the user of the terrinal
special privledges. This is done ty the software
circumventing the normal control features of the system. It
is important to realize that the only purpose of a trap door
is to ‘bypass’ internal controls. It is up to the attacker
to determine how this circumvention of control can be
utilized.

The attacker can construct the trap door in such
a4 manner as to make it virtually undetectadle to even
suspecting investigators. A penetration tiger teanm,

organized by the Air Force to test the security features of

36

il it G B I O M i i s

@« da

T e e regee— — .
e g

a computer manufacturers operating system, installed a small
trap door that was so undetectadle that the manufacturers
personnel could not find the clandestine code, even when
they were told it existed and how it worked [6].
b. Trojan Horses
A Trojan horse is different from a trap door in
several ways. Whereas the trap door is generally constructed
to circumvent normal system controls, the Trojan horse can
accomplish its malicious tasks without circumventing these
controls. Trojam horses are artifices, generally programs,
that have two functions:
1. An overt function- This functlion serves as a lure to
attract the program {nto use by an unsuspecting user.
2. A covert function- This function performs clandestine
activities unknown to the user of the Trojan horse.

The overt or ‘lure’ function of a Trojan horse
can, for example, be mathematical 1lidrary routires., word
processing prosrams, compilers or any program that might bte
widely used at an installation. Because these programs are
executingi on behalf of the wuser they assume all access
priviléges that the user has. This allows the covert
function access to any information that is availatle to the
user.

The covert function {s exercised concurrently
with the lure function. An example of this kind of artifice

might de a text editor program that leeitimately performs

37

i e O i AL R APl W

TN

P

editing functions for the unsuspecting user while bdrowsing
through his directories looking for interesting files to
copy. This 1is a particularly effective option for the
attacker due to the fact that as far ac¢ any internal
protection mechanism of the computer system is concerned
there is no “1llegal’ actions in progress. The Trojan horse
{e.2., text editor) is simply a user program, executing in
user address space, accessing user files, performring
perfectly legitimate system service requests such as giving

another user (e.g., the sudverter) a copy of his files.

D. CPAPTER SUMMARY

This chapter has offered a brief discussion of the three
methods that can bte used to attack & computer system. They
are: indadvertant disclosure, penetration, subversion. There
have been important distinctions made bvetween the present
conception of the known penetrator and his methods, and that
of the subverter and his methods. The known penetrator is
basically an amateur that is content to operate within the
computing environment as it exists. The penetrators
environment is one made of unintentional imperfections that
can be used to exploit a system. The sudverter, on the other
hand, is a professional that actively corstructs his
csubversion environment dy the methodical wundermining of a

computer system throughout its 1life <cycle by the use of

38

o e———— -

".
{
Y"
A
!
‘
i

art{ifices. The next chapter will discuss {n

the methodologies of this subversion.

39

greater

detatil

- S SRS

T S S Y

IV. METEODOLOGIES OF SUBVERSION

To reiterate the defirnition of subversion, it is the
covert and methodical undermining of internal and external
security controls over a computer systems lifetime to allow
unauthorized and undetected access to system resources
and/or information. This chapter describes the methodologies
involved in subdversion.

It has been the purpose of the previous chapters to “set
the stage’ for the discussion that follows. It is odbviZous
that there is not a clear understanding in the computer
security arena as to exactly what should be done to insure
that computer systems can reliadly protect information. As
long as this confusion persists subversion will te a threat
to the security of computerized information. It should Dde
kept in mind that those who might te involved in subversive
activities would not be confused as to what their goals are

or how they would accomplish them.

A. GENERAL CONSIDERATIONS
/

The majority of this chapter s concerned with the
activities that an subverter might coansider as “‘field
operations’., These operations 4involve activities that are

required to insert artifices, exercise them, and retrieve

40

.
o et sy en

RN

the resultant information, But there are several general
considerations that should be kept in mind when reading
about the various phases of subversion. Principal among
these is that any reference to the subverter is meant as a
reference to the subversive organization. Individuals who
might perform subversive acts would do so with the gzuidarnce

of all the expertise that might be availadle 1in this

organization.

1. Safe Computing Sites

Like any effective field operation, the subdverter
needs to insure that any techaiques and meckanisms used in
the field have been perfected at a safe computing site. This
might seem difficult if a new system {s the sudversive
target. However, there are machines availabdle today that are
micro-programmable emulators such as the Burrouehs D Machine
or the Nondata OM-1. A TFeasibility Study [15] has
demonstrated that a very sophiphisticated, large scale
computer system (Multics) could bde emulated on svch a
device. Because these machines are micro-programmabdle, one
machine can bde used to support several field operations.

Once a bdasic architecture 1is emulated, existing
operating systems and subsystems could be 1installed. These
systems could then bde aﬁalyzed for explojitadle foidles, and
artifices could de designed and tested. The dbasic algorithms

for software artifices can be refined in a safe atmosphere

41

!
T~
h-Jh-ﬁ---ﬁ-hh-Hhn--—---Qﬂnuﬂ.I--- o
.
SRCEIN VRS N N el

e o

s e o ——

o ——— ey o ———

to insure that there are no unwanted side effects. Sound
software engineering practices would be employed to analyze

the bdest approach to the subversion process.

2. Scope of Operations

The sScope of subversion 1s completely under the
control of the sudbverter. It can bde as focused as one
computing site or as widespread 5 several hundred
installations, all with roughly the same expenditure of
effort. This 1is accomplished by selecting the phase of a
computer systems life cycle in which to start sSubversion
operations (10]. The earlier in the 1life cycle a system has
been subverted, the more global the opportunities for
exploitation.

By 1installing artifices at the beginning phases of the
1ife cycle {(design or implementation) they will then Ydecome
an integral part of the computer system. Anyone who
subsequently procures one of these systems will Yecore a
potential target for exploitation. Identification of the
victims need not occur until later. Should the subverter not
have the opportunity to begin his operations in these first
life cycle phases, he would have ample opportunities in the
later phases.

The subverter can narrow the scope of his operations 1ty
performing his malicious activities during the distridution

of system components to the selected sites. He can select

42

e ——— s s A e

——— ey gy w

which sites are the most profitable and then intercept

system components as necessary to accomplish his goals.
Finally, by initiating sudversion operations during the

installation or production phase of a computer csystem, he

restricts his activities to that particular site.

3. Desirable Traits in Artifices

The following discussion will center on the three
major types of artifices; software trap doors, Trojanm
horses, and hardware mechanisms. Not only are the below
listed traits desirable, but they are qualities that can bde
easily incorporated into artifice construction.

a. Software Trap Doors

Recall that the principal funmction of a trap door
is to circumvent internal system controls under the control
of an activation key. With this in mind, the following are
several desirabdle traits that the subverter would
incorporate in the implementation of this type of artifice.

(1) Compactness. To give the user of the trap
door unauthorized privileges may ianvolve only enough code to
recognize the activation trigger and the one o¢r two
fastructions pequired to change the machine state to master
mode, The fewer the instructions the better. Once this 1is
accomplished, other programs can bde invoked to perforrm the

desired clandestine activities.

43

rm.-vv}-.;. - . oot T

(2) Revision independence. To insure that a trap

door remains in the system for years, perhaps 1its entire
life, 1t is necessary to install it in an area of code that

will not bde liable to revision. Operatine system software,

as pointed out earlier, is often riddled with design errors

: or sudject to planned changes. Placement of the trap door
should ©bve in an area that is not likely to undergo review.
For example, I/0 routines that are used to conmtrol hardware
devices are not generally changed in software revisiorns.
These are generally written in 1lower 1level languages for
efficiency and offer an excellent ‘refuge’ for artifices.

(3) 1Installation independence. Many “off the

shelf’ gepreral purpose computer systems come with a wide
range of options. But for a given family of systems, there

is usually a “core’ operating system that will be cormmon to

, any installation within the system family. By installing the

trap door 1in this ‘core’ of code the subverter is assured

]
I
|
that his artifice will be present ic the system regardless g
1
of the particular configuration that would be generated at ?

|
|3
f the installation.
i (4) Untracadle, The operation of the trap door
. should not in itself leave any trace of its operation. This
implies that either its operation does not encounter system

traps or audit trails, or it has the adility to erase any

EXY

N : . evidence of its activities, Frequently, the verv ‘primitive’

. or basic functions of an operating system, such as a

44

e

———— Sty R =+

teletype stream handler, are at too low a level to bde
audited i{r system logs. These routines are algo relatively
‘stable’ in that they are generally not subject to frequent
revision.

(5) Uniquely Triggerable. The means by which the

trap door is activated should be unique enough to insure
that accidental activation is wunlikely. One example is a
trap door that {is triggered by a unique sequence of
characters in a teletype stream. Too short é sequence or too
common a sequence might accidentally activate the artifice
by someone other than the subverter or his agent. On the
other hand, to long a sequence might require to much code to
check against and make the trap door code too lore.

(6) Adaptidility. The trap door chould have a

degree of generality or even programabdbility. Sirce the trap
door might have ©bdeen installed during the early pkases of
the systems 1life cycle, the subverter cannot always predict
the particularities of the installation or application. For
instance, since trap doors circumvent normal controls, it
could bde designed to modify operating system code onlinme. By
circumventing the write protection of the operating system
code area the trap door cam allow the subverter to adapt the
operating system to his needs.
b. Trojan Horses
As previously stated, a Trojan horse is a program

that is invoked by an unsuspecting user, It will perform a

45

- ——— - P (So———

PR 2 N

LW 1 Y

legitimate function (the 1lure) and a covert function. The
following are a few desirable traits for this artifice.

(1) Directed Lure. The lure (or overt) function

of the TrojJan horse will determine what kind of information
will come under the scrutinization of the covert function.
If the desired information is scientific in nature then 1t
might seem plausible to construct a Trojan horse that offers
a lure of some sort of mathematical computation. If
personnel records are the target then the lure might bde a
sort routine. It should bYe noted that the {information
availadle to the Trojan horse is any information that would
be normally bde availadle to the unsuspecting user. Not Jjust
the information needed to perform the lure function. This is
because most operating systems consider any program executed
by a user to be ‘owned” by that user for the duration of the
program execution. Any access rights that the user might
have are imparted to programs run on his bdehalf.

(2) Compatidility of Functions. The covert and

overt functions of a Trojan horse should perform “expected”’
actions. It is not expected that a mathematical 1litrary
routine would access the users file space (e.g., the covert
function bdbrowsing through files) when it is computing the
roots of a polynomial. System audit logs may record this
activity and suspicions be aroused, This could be
disasterous if the covert function was to inadvertently

cause the user process to be interrupted by a disk error.

46

- — N

Fowever it is expected that a sort file routine will access
the users file space. Subsequent disk errors might bde
overlooked as merely a fluke. This can be viewed as way to
‘functionally disguise’ the Trojan horse.
¢. Hardware Mechanisms

A Hardware mechanism is a special instance of &
trap door. It performs the same function of circumventing
normal system controle as its software counterpart. Its
capadbilities and traits are essentially the same. The method
of activation may vary due to the unique hardware
capabilities such as the ability to transceive radio
signals. There are two cases of hardware mechanisms,
programmable and non-programmabdle. Examples of each of these

types are presented later iz the chapter.

4. Obscuring Artifices

Proper obdscuring can make artifices virtually
undetectadble, One must realize that once code or hardware is
operational in a computer system there would bde no reasocn to
review 1t unless something failed. Think of how hard it is
to find a difficult bug that 1s dbdeing purposefully searched
for in a program. Opne can imagine how difficult a small trap
door would bde to find if the author of the trap door takes
special pains to obscure it, Furthermore, even if found, the
vell-designed artifice will appear to be just another dug.

Obscuring artifices is considered essential to the

47

3

o —— gy | PCTB—

e i habiios e —— -

subversion process. Odbscuring techniques are limited only bdy
the abdility and understanding of the sudbverter 4{installing
the artifice.

Listed bdelow are a few techniques that the subverter
might use in this process.

a. Modifying Object code

Binary machine code 1S the most obscure medium in
which a software artifice can reside. The Multics Security
Evaluation {1#] amplifies this point:

Clearly when a trap door is 1inserted, it must te well
hidden to avoid detection by system maintenance personnel.
Trap doors can bYest be hidden in changes to the binary
code of a compiled routine. Such a change {is completely
invisidle on system listings and can bde detected only dy
comparing bdbit by dit the odject code and the corpiler
listing.

Disadvantages of this obscuring method come abdcut
because obdject modules may be periodically recompiled for
various reasons ([1¢]. This, of course, may not bte under the
control of the subverter and methods must be devised to
insure periodic reinsertion. It has been informally reported
[1e] that a compiler could de “enhanced’ to alwvays reinsert
an artifice in the object code whem a particular svstem
module was recompiled. Compllers themselves are rarely
recompiled by the user, So the clandestine code that was

located in the compller would de quite safe,

Obscuring {in odject code is particularly suited for

Trojan horses. Software that is procured from vendors as

bt -+ . T S et -

- a—

———

LA™ T

—

— L o L - ” " e N
T _— hukias T —

‘off the shelf’ computing aids often do not provide Source
code listings. This is to protect rproprietary rights. The
sudbverter (perhaps a legitimate vendor) can use this fact to
his advantage, He could offer software products to
unsuspecting computer installations much as any other
software vendor might. 1In fact, the subverter could
anticipate the installations needs if he had agents on the
premises that knew the particular situation. Since the
subverter 1s not primarily in the bdbusiness of making money
by selling software, he cam undercut competitive bids.
Detection risks for this obscurirg method are
considered relatively low., Even if the Trojan horse were to
malfunction and lead system maintenance personnel to suspect
it of 3performing strangley’, wvithout source code
documentation the first order of bdusiness would bde to
contact the vendor for another copy of the proerar.
b. Atusing of Software Engineering Practices
When usingz source code as a means of inserting
artifices, means must be devised to obscure the true purpose
of the clandestine code. Frogram documentation could prove
invaluadle in this effort. Good program documentation is
essential to the understanding of complex programs such as
operatine system software. Most higher level languaees allow
variable names of ample 1length. Yet many programmers are
content to follow archaic FORTRAN or assemrbler-like

practices that tend toward short, abreviated variadle names

49

© e e e ——— e og—— -

Amns PP AR ——

-

that have meaning only to the programmer at the tire he
wrote the code, Inadequate commenting of source code {is
another common abduse.

¥riting programs that are unstructured or
non-modular in organization can prove quite effective for
obscurine. This is cormonly refered to as “spaghetti dowl’
logic. By using non-local “‘goto’ statements that seem to
Jump around the program arbitrarily, it {is virtually
impossidble to follow the program logic.

Allegedly ‘good’ documentation practices can
also bde utilized in the odbscuring process. This technigue
can simply bYe 1labdbeled as lying. Plenty of apparently good
comments can lure the reader away from scrutinizing the code
too closely. Mislabeled variables can also steer the reader
avay from the actual purpose of the clandestine code.

The use of source code as a mean of inserting
artifices has the dual distinction of offerina the subverter
the greatest returns 4s well as the greatest risk of
detection. Source code artifices will not bde destroyed bdy
recompilation of the code as sSome other methods of
insertion. However because it 1is in human readabdble form,
artifices are more visible and therefore more vulnerabdle to

possible detection [12].

5¢

© s 4

c. Using Assemdler languages

Most assembler language traits bdoth good and bdad
are bdenifical from the subversion standpoint. Some of these
traits are:

1. Most ‘powerful’ language availabdle.

2. Most efficient in execution time and core
requirements,

3. Least comprehensidle of all the human 1interpretabdle
computer languages.

Assembler languages are the most ‘powerful’
because they allow greater control over the programming
environment than any other language. Assembler languages are
not constrained to the addressing restrictions that are
imposed by the structured environments of the higher 1level
lansuvages. There is no distinction between data and code
areas. This allows the subverter to either write self
modifying code or obhscure clandestine code as data.
Assembler programs are noted for their “spagetti dewl’ logic
because it 1s difficult to write assemdbler programs that 4o
not use goto statements. Since goto statements are exrected
in assembler code, it is easy for a subverter to write a
program that has a goto statement whose operand 1is a

variadble label rather than a statement ladel. The variabdle

ladel could define the begining of a series of hexaderimal-

or bdinary constants that are nothing more than the

equivilent bdinary opcodes of the clandestine routine. Close

51

[N

-t

scrutiny is rarely given to these ‘tables’ of constants,
particularly if the program is functioning properly.
Assemdbler language source code is assembled to
machine code instructions on an almost one-to-one tTasis.
Therefore the subverter c¢an exactly predict the amount of
‘overhead” the artifice will impart to the subverted system,
@. Strategic Placement
Obscuring software artifices, particularly trap
doors can bYe greatly erhanced by strategically placing the
clandestine code away from areas that might be svbject to
investigation. For example, consider a trap door that {s
triggered by an activation key from a teletype. Perhaps
security investigators suspect that a trap door exists and
that {t is activated dby a teletype stream. Naturally the
investigation would inspect all code that handles the
teletype stream. The subverter can foil these efforts by
placing the trap door in an area totally unrelated to the
teletype routines, such as the disk I/0 driver. Since the
trap door resides in a routine that executes in the master
mode, addressing restrictions do not apply, and the teletype
buffer is addressable from the trap door’s vantage point.
The subdbverter can either walt for normal disk
useage or execute a ‘do nothing’ program that uses the disk.
This will insure that the trap door that resides in the disk
driver routine will be exercised at the Same time the

activiation key is present in the teletype buffer area. Upon

52

recognizing the activation key the trap door will perform

the necessary task required to circumvent the normal
controls.
e. Using Confinement Channels

Confinement channel is the general term applied
to {nformation paths that can exist between a proegram
(called a service) and its owner. The information is gained
when another program (called a customer) invokes the service
and the service subSequently extracts unauthorized
information from the customer and passes it to the owrer of
the service [16].

Much of the cemputer security evaluation
criteria (8] mentioned in Chapter II is concerned with what
is <called the simple security condition. This condition
states that a subject (user or his program) cannot have read
access to objects for which he is not cleared. Confinerent
channels 'generally meet this condition. However they do not
meet what is called the confinement property {(also known as
the *-property). The cornfinemedt property states that if one
prozram has read access to data at one security level it
cannot have write access to another file at a lower security
level [21]. Thus the program is ‘confired’ to not, in effect
‘declassify’ information, but it is confined to write into a
file of the same security level or higher.

Most systems do not evel consider the issues of

confinement. If an artifice was to introduce such a chanrel

53

it would probadly not be recognized for what it was. One
type of this channel is sometimes called a covert channel.
This channel is called covert because the method by which
the 1information 1is passed is particularly difficult to
detect. An example is offered by Denning [14]:
One type of flow cannot be controlled easily, if at all. A
program can convey information to an observer by encoding
it 1into some physical phenomenon without storing it into
the memory of the computer. These are <called flows on
covert channels... A simple covert channel is the running
time of a proesram.

Because these channels for information flow are
not the “rormal’ paths that information are thought to flow
on (i.e., variable parameters, files and other ‘storage
channels’) they are easily cverlooked by investigators. In
the simple example above Denning [14] explaine how the
running time of the program can bYe used to ccnvey
information:

A program might read a c¢onfidental value, then enter a
loop that repeatedly subtracts 1 from the value until it
reaches zero. The owner <can determine the confidental
value by simply observing the running time.
Confinement channels will Dbe discussed again in later
sections of the chapter.
f. Hardware Obscurine

Today integrated circuit technology offers a near
rerfect medium in which to obscure hardware mechanisms.
Bquipments that have medium scale integration (MSI) chips

can be replaced with enhanced laree scale integration (ISI)

54

chips. The enhanced <chips would perform the required
functions of the original chips, but also perform functions
under the control of the subverter. Detection of these
devices, once installed in target equipment s virtually
impossidle, since the subverter would undoudtedly inmsure
that all external appearances such as physical appearance,
logical operation, power comSumption, etc., would dbe the
same. There is no non-destructive way to thoroughly examine

these devices.

B. INSERTING ARTIFICES OVER THE LIFE CYCLE
OF A COMPUTER SYSTEM

The subverter by 1inserting artifices into a computer
system is, in effect, “creating’ a subversion environment on
the taregeted computer system. He is i{nserting the ‘tools’
vhich he will wuse to undermine the security of a computer
system. Once this security is subverted, he can then extract
the information he desires. But the timeframe Ddetween when
the artifice 1is inserted and when information is retrieved
may be years.

He can be very successful 1in his {nserticn efforts
because the places 1o which the subversion occurs, are
relatively open environments that are not hardened against
his efforts. This 1is because there maybe no classified
operations bYeing conducted at many of the places the

subversion occurs.

55

There is an 1interesting property in the insertion

activity that differs from most other forms of criminal

activity. The sudbverter 1s not removing or stealirg anything

from the premises, on the contrary, he is introducing “a

little something extra’.

1. Design Phase

The subversion of a computer system design 1is a
sudbtle process. AS in any desien process there are huadreds
of alternatives to consider. Among the many choices on any
fiven issue, several may prove acceptable. It is the job of
the subverter to be the “‘standard tearer’ of those

alternatives that will aid him ir his subversion efforts.

SO

Inadequate design choices have been used in the past
to exploit a system. In 1974 the Naval Research latoratory

conducted a penetration exercise on a Univac 11£€ system

running under Exec VIII. The author of the resulting report

[(1”] comments:

[: However, even if an MLS (multilevel security system) 1is

3 ! corpletely bdug-free, in the sense that its response to

: i user requests is completely specified by its design, this

i does not imply that the MLS will not permit dissemination
cf data to unauthorized users. Our ©penetration of Exec
VIII is not based on bugs in the implementation, though
they certainly exist. Instead, we expleit several aspects
of the Zxec VIII desiegn philosophy which, when taken
together, make penetration possibdle.

Petatls of this particular penetration exercise are outlined

later in the chapter.

.
A —

The following is a bdrief discussion of how the
subverter might make seemingly sound des;gn choices and
still subvert a systems design. .

a. Operating System Software

(1) Password procedures. There are several ways

to design password 1login procedures. Three viable choices

that the subverter might propose are:

1. encrypt the passwords with a seemingly non-invertabdle
alegorithm

2. allew the user to choose his own passwords

3. allow multiple login attempts for the ‘forgetful’

user.

The first case was used on the Multics
system at the time of the USAF security evaluation [1€]. The
designers of the system hoped that the algorithm they were
usine was non-invertable, the evaluation demomstrated that
1t was not.

Ir the second case, user chosen passwords
are often easy to guess [12]. Cne such system allowed the
user to choose his own password. The system administrators
would enter a new user into the password file and as a
convenience, would enter the users name as his password
until the wusers first session, at which time the user was
supposed to change the password to one of his own choosing.

Due to a design choice, the password file was readabdle by

57

. I .t . o .
";h—- Attt Mt D o il W

e irameaar

all users, This in itself was not a cause for alarm, as the
password field is encrypted. But the firct entry in the file
is the user”s name in plain text. A malicious user, knowing
the administrators procedure, attempted the 1login sequence
using the names in the ©password file until there was a
sucessful login (presumably from a new user). Subsequent
investigations revealed that many of the users had not ever
bothered to change their passwords. This also points out the
problem of allowing too many login attempts.

(2) Audit Procedures. Two design suggestions

that a subverter might recommend are:

1., audit all actions that might be security related (the

more the detter), or

2. audit only user mode actions.

The subverter bty recommending excessive auvditing will,
in effect, render the auditineg process ineffective. Those
that are tasked with the manual reviewing of audit logs will
be quickly bduried DbDy the sheer volume of it all. The
listings will quickly fall into disuse in the corner of some
storeroom.

By auditing only user actions the subverter
is given free “license” to implant his artifices in master
mode routines that are ‘trusted’. The subverter reed not
worry abdbout amy actions carried out dy artifices that exist
in master mode routines decause their actions will not de

traced dy any audit mechanism. If a trap door circumvents

58

control of the system by placing the subverter ir raster

mode then any sudbsequent actions of the subverter will not

be audited.

(3) Confinement Channels. Sore areas ¢f the

computer system could be designed to pass information via a

f confinement channel. Should the sudverter find himself
workine in one of these areas he would undoudtedly take
advantage of the opportunity. The concept can bte best
illustrated using an example.

Many operating system designs are pfocess
oriented. Each time a new process is required dy the system,

i a unique 1identifier 1is assigned to this process so the

system car keep track of all the different processes. There

appears to be nothing significant abdout the process-id.

Therefore it would seem irrelevant as to how this unique

! jdentifier is selected. Logically the easiest choice would
! seem to be to assign process—-id numbders sequentially as they
are needed. By making this design choice the Sutverter has
constructed a confinement channel.
i Assume there are two processes, ‘A’ and
‘B’, active in a system at the same time. Process ‘A’ 'is a
{ i clandestine service routine (with a Trojan horse) that has
access to sensitive information. Process ‘A" desires to
communicate sSome of this sensitive information to process
‘R’, that is not authorized access to the information. They

will communicate by using the process-id numder as a dinary

89

P dmenchieadoncii i e afilin ettt TE el G e e _J

' ' o T . - i e "-P-h-—_T

communication channel., Eecause process-id mumters are
assigned sequentially, process ‘B’ can deduce information

£rom the id numder based on the previous values. If ‘A’

desires to send a birary ‘17, “A° will create two new dummy

processes (and immediately destroy them). This will increase

4

the Process—-id numbder dy two. If ‘A" desires to send a
binary “¢°, it will create and destroy one process.

On the receiving end, ‘B’ will create one
process and save the id-number and then destroy the process.
B° will compare the mew process—id with the one saved from
its 1last active period and compare the two. If it is three

greater than the previous process-id the 1information sent

[SUNSIS

was a ‘1°, i1f it was two greater it was a ‘0°. Because dYoth
A and ‘3’ are executing on the same machine, these

activities are not occuring at the same exact time and they

e ——— e

are synchronized (in a crude sense). Because there will te

other processes im the system creating new process-id

: ; numbers, the channel will be ‘noisy’. But moderm information

theory can bYe applied to detect transmission errors and

reliadle results can de obtained [16].

ey,

(4) Backward compatible features. Manufacturers

must insure that new product lines are btackward compatitle
if they wish to upgrade old customers. The subverter can
capitalize on these design requirements by insuring that
older system folbles are carried along to the new systems

design. The IBM Systems Journal [19) offers an example:

60

i ———— A o

Two VM/37¢ featuyres were discovered that permitted a total
penetration, and others were discovered that could cause
the system to fail. The first case concerned the 0S/360
use of self modifying channel programs in its ISAM access
method. To support this feature 1in a virtual machire,
¥YM/37¢ had been modified to examine channel programs for
the pattern associated with the use of self modifying code
by 0S/36¢0. the VM/37¢ method of handling such channel
proesrams was to erecute some commands out of the users
-virtual storage, that 1is, not in VM/37¢ virtual storage
space. As a consequence, a penetrator, mimickirg the
0S/36@ channel program, could modify the commands in his
storage bdefore they were executed by the channel, and,
theredy, overwrite arbitrary portions cf VYM/378.

b. Other Software Design Choices

Most computer systems are offered with a suit of
supporting software such as compilers, text editors, service
routines, etc. These can provide the subverter opportunities
to incorporate Trojan horses into the overall system desigen.
Software that is supplied as part of a package deal 1is
financially attractive t0 customers that would thave to
otherwise procure these items from other sources. Many times
for efficiency or convienence, a Service 1like a corpiler
vill have special privileges (like executing in master mode
for seme fuctions). Thus a trap door in this pregram is as
effective as one in the operating system itself.

Service routines that are designed for denign
purposes can be used ty the subverter to insert artifices.
IBv/36C offered one such service [20]:

The means for insertine a penetration
mechanism into an existing program (either system or user)

stored on a direct access device is provided by one of the
Operating System/3€¢°s own Service Ald programs, IMASZAP.

61

R

v

- B

PR P U

-
—t

This program 1is designed to modify data and instructions
at any given location on a direct access file, which is to
say, one can modify information anywhere on a disk pack.
¢. Hardware Alternatives
The selection of hardware for computer systems
will also offer the subverter many opportunities to aid his
cause. The sudverter can concentrate on central processors,

peripheral equipmeats, or bdoth.

(1) Central Processors. The selection of central

processors from the subverter’s point of view {is
straightforvard, The simpler the architecture the less
effort that will be required to sudvert it. Optimally the
best choice is an architecture with no hardware protection
mechanisms. But this this choice is an impractical one for
toth the subverter as well as the customer. There would bde
little chance that such an architecture would de considered
for use in a system handling seuasitive information, ard the
subversion effort would bYe for naught. The sudverter must
work within at least minimum guidelines.

For example, one set of minimal guidelines can
be found in The ADP Security Manual [€]. This 1list of
mechanisms is extensive. One would think <that such a
complete 1list is sufficient to assure a secure system.
Bowever, many of the penetrated systems in chapter two had
these features and penetrators were very successful in there
efforts., It 1s¢ important to realize that having these

features is not sufficient for a secure condition, 1t is how

62

x o i

e st

T ——

——— e

effectively they are employed. It 1is the Jjobd of the
sudbverter to ensure that they are not effective even if they
are present. The following is from the ADP Security ™anual

(s):

4-2¢@ Fardware Features.

a. The execution state of a processor sould include one or
more variables, i.e., protection state variabdles, which
determine the interpretation of instructions executed by
the pProcessOrl.ceecee

b. The ability of a processor to access locations in
memory (hereafter to include primary and auxiliary memory)
should be controlled (e.g., in user mode, a memory access
control register might allow access only to memory
locations allocated to the user by the 0/5).

¢. The operation of certain instructions should depend on
the protection state of the processor. For example,
instructions which perform 4input or output operations
would execute only when 1in master mode. Any attempt to
execute an instruction which is not authorized should
result in a hardware interrupt.....

d. A1l possible operation codes, with all possidble tags or
modifiers, whether 1legal or nrot, should produce known
responses by the computer.

e. All registers should be capadle of protecting their
contents by error detection or redundancy checKS.eoes.

f. Any reglister which can bde 1loaded bdy the operating
system should also be storadble, So as to permit the 0/S to
check 1its current contents against its presumed
contentS....

g. Error detection should be performed on each fetch cycle
of an instruction and its operant (e.g., parity check and
address hounds check).

h. Error detection (e.2., parity checks) and memory dounds
checking should de performed on transfers of data between
memory and storage devices or terminals.

1. Automatic programmed interrupt should function to
control system and operator malfunction.

\

63

e b

J. The identity of remote terminals for {nput or output
should be a feature of hardware in comdination with the
operating system,
k. Read, write, and execute access rights of the user
should bYe verified on each fetch cycle of an instruction
and its operant.

These requirements as outlined in the
Security Manual are general eanough So that viadle arguments
can bYe constructed to demonstrate most major vendor’s
processors ‘acceptable’. A way in which the subverter could
meet the letter of these requirements and still defeat the
protection mechanisms was demonstrated in the Multics
Security Evaluation [12].

The vulnerability involved violation of
requirement ‘k° 1listed above (access on each fetch). The
Security Manpual states that each 1instruction must produce
known results (requirement “d”), but this vulneradility

involved a STQUENCE of instructions. The Multics Security

Evaluvation [12] outines the method:

This vulnerabdbility occured when the
execute instruction was in certain restricted locations of
a segment with at least read-execute (re) permicsion. (see
figure 1) The execute instruction then referenced an
object {nstruction 4in word zero of a second segment with
at least R (read) permission. The obdject dinstruction
indirected through an ITS pointer in the first segment to
access a word for reading or writine in a third segment.
If all these conditions were met precisely, the access
control flelds in the SDW (segment descriptor word) of the
third segment would be ignored and the object 1imstruction
permitted to complete without access checks.

This particular hardware ‘d»ug’ resulted from a field

installed desien change to the equipment that was 1installed

€4

Y

!

at all trhe computiny sites. A sutverter might well ircclude

such ‘features” ir the initial hardware design.

RE Access
ENTER 0
— 1
R ACCESS 2 NuLL AcCEss
0| sTA@ 8, "\ [xEC 8P| 0| 3
4
5
\» TS | 6

Ficure 1. ExecuTe INSTRucTioN Bypass

(2) Peripherals. Generally, peripherals do not

have the stringent requirements placed on their internal
behavior like central processors. They are generally thought
of as bYeing under the control of the central processor and
if the CPU is “‘contained” (in a security semse) thenm the
peripherals will follow. This concept is rapidly changing in
todays technoloey. Many devices Such as direct memory access
(DMA) I/0 equipments are specialized processors in their own

rizht.

3
s
?

Configurire a system so that ‘specially
modified’ I1/0 devices can 1intercept (or directly accecss)
sensitive information 1is totally withia the realm of the
cudbversive desiener., Likewise, procrvrement policies that are
based on the lowest bidder caan (and hrave been known to)
result in a composite system that comes from a variety of
manufacturers. A subversive designer can specify equipments
to such a degree that only one vendor (the subverter) will
be able to meet the specificatiorn. By specifyirg in this
manner or by competitive'pricing these “enhanced’ equipmerts

can find their way into a “secure’ computer system.

2, Implementation Phase

In this phase of a computer systems life cycle, there
are two computer systems to consider. There is the corputer
system under development, and there is the computer system
used for the development (i.e. the “host’ computer). The
subverter would first penetrate the host computer. Once this
is accomplished, he would have access to the new software
under development. Thls tecanique was demonstrated during
the Multics evaluation [1¢]. A trap door was inserted into a
new version of the Multics software that was to be
distriduted to all Multics sites.

The tareget, of course, would be the new software (or

hardware) under development. It would be these new products

€6

that would be employed in the protection of information 1in
the future,

Insertineg artifices during the implementation phase
can offer as many advantages as inserting during design. In
fact, there are additional advantages Ybecause inserting
artifices duringe implementation of a system does not require
the subverter to bYe cr the vendors payroll.

Often programmers can work from their homes on rerote
d1alup terminals. Recause these vendor develormert systems
are not hardened afainst wiretapping or other possitle
penetration techniques, the subverter c¢an infiltrate as
desired. Private corporations would tend to shy away from
particularly restrictive security practices when there is no
classified activities present. The Multics Security
B®valuation [17] which was written in 1574 pointed out such
an environment:

«ee it should ©be roted that the software for WWMCCS
(World wide Military Command and Control Syster) {is

currently developed usirg uncleared personnel on a
relatively oper time sharing system at Horeywell’s rplant
in Phoenix, Arizora. The software 1is monitored and
distrituted from an open time sharing system at the loint
Technical Support Agency (JTSA) at Reston, Virginia. Both
of these sites are potentially vulneradle to penetration
and trap door insertion.

Two areas of activity that might te subdject to
subversion ir the implementation phase are, coding and

testing, and hardware assembly and checkout.

67

|

e AR

a. Coding and Testing

Coding and testing of system software 1is
concerned with one major goal: that the programs vperfcrm at
least the required functions. This is a minimal requirement,
not a maxirmal one. Testing criteria involves cnly icsuring
that a given module performs the requireé¢ tasks correctly.
It does not involve the concept of determinine all the
functions that it might be able to perform. In general, this
characteristic cannot be determired for a proegram sircce this
reduces to the wunsolvable safety protlem (4] diccussed
earlier.

If subversive activities are to be cerried out
by the actual programmers assigned to the project, there are
a few sgeneral practices that the subverter might follew. Cne
such practice is using global or external attritutes for
variables that might not otherwise require ther. This can
make data avallable tec other covert routines that will bYe
able to utilize them. This is common practice in operating
system programming, particularly if the langvage used |is
assembdler language.

Some languaces, particularly higher level
languares that are constructed for operating system use, do
not perform run time bounds checkinz on data structures that
use subscripting or pointers. This is not done becauvse the
extra code required cannot bYe afforded in an operating

system environment. Fffective wuse of such structures can

68

o

T S Y

N I T T

allow clandestine routines access to areas that would be
otherwise 1inaccessable, For instance, a routine that has a
trap door installed performs some processing on an array
that is passed to it. The maximum expected size might be 10¢
elements. If there i{is no runtime subscript btounds checkinge,
the routine could check the area Jjust Yeyond the 1¢€th
element for a unique bdit pattern that would activate the
trap door. Specific features such as hardware bounds
checking mechanisms will not help much because there would
te no violation of the jobs total address space.
b. Hardware Assembly and Checkout

The safest time to carry: out subversion
activities on hardware {s during the assembly of the
equipment. Insertion costs and detection risks would be 1low
during this period. =Equipment <could bdYe assemtled with
specially enhanced inteerated <clircuits that appear and
function exactly 1like the normal circuits. This could be
dore by interceptinrg the suppliers shipment of parts to the
assemtly plant and replacing them with the subtverted
hardware. This way the subverter would tbe totally removed
from the insertion process. Zntire product lines can bde
equiped with these hardware trap doors. If shipments could
not bYbe intercepted, or 1if the assemdbly plant was the
manufacturing facility as well, other arrangements could be
made, Assemdly line versonnel could replace the normal chips

in the assemdly 1line parts bdbins with the enhanced chips.

€9

Plant security is typically oriented toward irdividuals

taking products out of a plant, not dringing them into it.

3. Distribtution Phase

The most significant advantage to insertine artifices
in system components (hardware and software) durine the
distribution phase is that the subversion occurs after the
review process is completed. These components already carry
the “seal of approval” and will, in all probatility, not te
subjected to close scrutiny as=ain.

Subversion activities carried out during the
distributipn phase require significantly less investment i
technical talent than than other phases of the life cycle.
Activities involve the replacement or modification of valid
equiprents and software with subverted copies. Personnel who
might be involved are delivery truck driverc, mailmen,
receiving or shippineg clerks. Most of these personnel can
perform their aspect of the subversion ané not be aware of
the “big picture’., Even 1if apprehended and 1interrogatead
their knowledge of the extent of the operation would dYe
minimal.

Suppose that the subversive oreganization
legitimately purchased several terminpals from a company.
Upon receiving these terminals they are carefully unpacked
so as to not damage the orginal shipping containers.

Technicans could then modify the termimals with special

7e

]
4
nadh

T

.
. ma

‘ephancements’ and insure that they perform as desired. The
terminals are then carefully repacked so that nothing would
appear disturbed. When the subdbverters received word that
company XYZ had ordered some of these same terminals for a
new multilevel security application, they could bde replaced
for the normal terminals. This way the sudbverters have a
steady supply of terminals, with only the initial
investment.

There are various methods that could be employed to
substitute the enhanced terminals for the normal ones. It
night require the services of a slightly dishonest truck
Ariver or warehouse clerk.

The 1important point {s that the terminals would not
be suspected because they were not ‘stolen” in the classical
sense of the term, just replaced with ‘enhanced’ versions.
The shipping' papers could bYe changed to reflect the
different numbers if serial numbers could not be chanzed.

In other areas, the process might even Ye easier.
Companys often put out advance notice of upcoming software
revisions, or hardware field changes. Subverters could be
alert to these things and be ready with enhanced revisions
or field changes. On a software revision the sudverter could
conceivadbly intercept a software revision tape and modify
(or replace it) within hours. The delay would be negligidle.

Another method that can be used is for the subdbverter

to generate bogus software revisions or field charges to te

71

I OO SR LRI AN

carried out by system maintenance personnel. These changes
can bYe forwarded with forged stationary and customers would

have no reason to suspect that the changes are bogus [1@]).

4, Installation Phase

The installation of any computer system 1s a rather
chaotic period., The sudbverter can capitalize on this chaos
and use it to his advantage.

There are several opportunities to install software
artifices during the initial installatior of a new system,
particularly a new operating system. Several tugs are bound
to surface and the system may require aumerous regenerations
of code to test out all the changes required ¢ty the
tailoring of the system to the particular installation.

Systems programmers will be uncertain atout the new
systems ‘tehavior patterns. In such an uncertain environment
security personnel will npnaturally not allow sensitve
information to be processed, and in fact might allow the
system to be run under less control than would otherwise be
present. It is doubtful that a maliclious systems programmer
would be scrutinized very closely and he could insert many
trap doors into the new system.

Many decisions are made during these initial break
in periods concerning operational procedures that the
subverter can offer his “advice’ on. Each installation is

different and requires judgement calls on the particular

72

. o e - - - -
T
N < w7
= - -

situation at hand. A highly tecknical sudbverter (such as the
vendors representative) can prove suprisingly effective in

this kind of situvation.

An interesting method for inserting trap doors that

can be implemented during the 1installation phase {s

suggested in the Multics Security Evaluation [1@].

Fere, the system initialization code is modified by the
penetrator to 1insert other trap doors as the system is
brought up. Such trap doors can be relatively invulnerable
to detection and recompilation, because system
initialization is wusually a very complex and G[poorly
understood procedure.

5. Production Phase

Inserting artifices during the production phase ¢f a

systems 1life cycle may entail more risk than inserting

o ————— e e A o -

during the other phases. All security measures will bde in

place due to the presence of sensitive informatiocn. Put

i these risks are only high in comparision to inserting during
{ the other 1ife cycle phases, and in an absolute Sense can bdbe
2 i quite acceptable, Recall that the commom “computer criminal’
3 or penetrator works exclusively in this penetration
‘ environment and has had excellent results. Techaniques used
by the subverter to install artifices 1in the prcduction

phase of a system are the same techniques uced bty the

penetrator to gererally exploit a system, 1i.e., sSystem

.
e ety i B

foidles.

73

-

One could argue that it seems senseless to use an
unintentional trap door (a foidble) to imstall an intentional
trap door (an artifice). But one must rememter that the
subverter is not out for the “‘quick dollar”., Fe is a
professional that 1is in the business of gathering
information over a long period of time. The subverter will
certainly use any device at his disposal, but the
deliderate, well thought out, and tested artifice can insure
results over the 1loneg haul, with a minimum of risk. The
artifice will contirue to work even if the orginal foidle is
found and corrected.

It 1¢ instructive to examine how one might 1{irsert
clandestine code in a system when it is in an operational or
productiorn mode. The example choosen 1is the Univac 11¢S
penetration exercise. The success of the exercise was due to
two design foidles [17]):

1. Inadequate error recovery. For any given job the user
had the ability to request the control of error
recovery. In general ap error routine in the Exec VIII
operating system had access to the same addressing
environment as the routine causing the error. Exec VIII
did not stack error handling routine requests, tbtut
deleted the previous request.

2. Unprotected reentrant rouvtines. Shareabdle
non-executive reentrant routines in Exec VIII are called

reentrant processors (REP). Examples of these are

74

PV

PRPIG WV

e s e~ ———— A~

—— g, 8 o

.
e~y

compilers, text editors, data management subsystems,
etc. Each RFP must have an associated data area that is
writable. Due to a hardware design oversight, write
protection is provided for BCTF instruction and data
banks or for neither. For the REP to de adle to modify
its associated data bdank the code area must run
unprotected from modification.

Pue to Exec VIII core allocation policies, there was
usually a number of unused words at the end of the last core
tlock allocated to the REP code area. The sequence of events
vas as follows [17]:

1. A legitimate program called 3BREAKEP requests to
handle its own error recovery.

2. The BREAKER program prepared an out~of-bounds data
bank for the victim HEF and linked to it.

3. BREAKER invoked the victim REP and the REP
immediately caused a guard mode error while tryinge to
access its data bank.

4, Control was immediately returned to the BREAKER
routine via the error handling request. BREAKEF then had

write access to the victim REP,

{’ 75

»

5. BREAKER checked the end of the victim REP to see 1{¢
there were enough free words in the code bdlock to insert
a calling sequence to a clandestine routine. If there
was, the entry point of the RFP was changed to a jump to
the dbeginning of the free area and a calling sequence
was inserted in the free area.
Using this method a sudbverter could essentially bduild a
general purpose Trojan horse that could bde used irn various
ways. Depen&ine on the purpose of the clandestine program
invoked tv the calling sequence, the subverter could:
1. access information owned by amy user who subsequently
invokes the victim REP. |
2. install trap doors in proszrams owned by users of the

victim REP, such as the operating system,

6. Summary

The insertion phase is the most significant aspect of
the sudbversion process. The efforts that go into this phase
yield ‘tools” that will =zive the subverter access to
information almost as easily as the owner of the
inforrmatior. Whereas, the subverter has constructed a sound
foundation from which ¢to work, he has left the lesitimate

user one of <and. \

76

C. EXERCISING ARTIFICES

The discussion up to this point has centered on the
sudbverter creating the subdversion erviromment. Attention
will now turn to how the subverter can use this environment
to expleit a computer system. There are several activitles
that can bde carried out by the subverter after he has
activated the artifice [11];

1. extraction-— the withdrawal or copying of data

2. alteration~— changing or modification of data,
programs or hardware,

3, addition=-—= adding extraneous data

4, utilization- using the system resouces malicously.

A1l these activities are possitle odjectives of the
subverter. Before these activities are discussed it 1is
instructive to first understand how the artifices that willil
enable these activities are triegered.

1. Activating Artifices

a. Software Activation

(1) Trojan Horses. Trojamn horses are wusvally

activated by the victim program . Although the mecharism is
considered activated that does not imply that the covert
function of the Trojan horse will necessarily dc anything
malicious. Due the the possible wide usage that a Trojan
horse can get, the subverter may desire to 1limit the

information that it gathers.

A text editor can be enhanced to check the
file name of those files it is employed to edit and bdased on
a predetermined target the Trojan horse will respond
accordingly. The target migkt be the system password file,
When the editor senses this file it will copy the file to a
safe place, otherwise it will lay dormant. A safe piace 1{is
any area that 1s accessable to the subverter. This may Ye a
file in the subverters own directory or a system bduffer area
that 1s accessable via a clandestine routire.

(2) Trap doors. Should the subverter require
close control over when an artifice is activated, it might
require an azent to input the trigeger via a terminal or by
submission of a batch job. The activator reed not te aware
of what <clandestine activities are in proeress. Tor
instance, suppose a trap door was inserted in a system
durine the implementation phase of the systems 1life cycle.
The csudverter knew exactly what tasks needed to be performed
but not when. Remember that the i{nsertion may have taken
place years prior to the time of its activation. Imagine the
followine scenario.

A janitor is in the process of <cleaning a
room that contains a terminal. Like many installations the
system runs 24 hours a day. The Janitor has received
instructions to turn on the terminal and type in a giver
string of characters. Fe then proceeds with his ~leaning

chores. At the end of a predetermined time the Jjaritor

78

switches off the terminal, and proceeds as thouegkr nothing
had happened. The trap door was programmed to periodicelly
check the teletype bduffer for the predetermined pattern,
perform 1ts clandestine function and then erase all traces
of its actions.

Another method of activation for trap doors
1s by timer. If a sudverter 1is aware that some valuadle
information will ©be 1input into the system after a certain
date, he can install a trap door that will periodically
check the system clock for a certain date. Upor recognizing
that the date has occurred the trap door will copy the
information to a safe area for later retrieval. Variations
on this theme have been informally reported within the
Department of Defense. These artifices were implanted by
diseruntled employees. The results of these implantations
can bYe dlsasterous. It could mean the voiding of thcusards
of dollars worth of software because there is no way to fiand
the malicious code and the risk could too great. If <such a
mechanism was installed {n something like automated process
control software, thousands of dollars worth of damage corld
result,

b. Fardware Activation
Methods for activating hardware artifices will
vary with the sophistication of the mechanism. The following

are a few examples:

79

1. An enhanced chip that is part of a teletype terminal
is activated by the systems 1login sequence. Upon
recognizineg the sequence, the chip will store the users
name and password in the chips own memory area.

2. An “intelligent’ chip such as a special purgpese
microprocessor that can be microprogrammed Yty the data
stream that follows the trigger. This mechanism could
reside in peripheral equipment and e wused to
selectively copy data to other storage devices or
command.

3. A central processor that has been ‘modified’ to
disable memory checking mechanisms or place the
processor in master mode when a special sequence of
unused opcodes is executed. The opcodes wher executed in
any other order will have no effect on the processor.
There would b%e another special sequence of code that

would restore the processor to normal operation.

2. Techniques of Exploitation

After the artifices have teen activated there are
several activities in which the subverter can engage. Below
is a drief discussion of some of the possibilites.

a. Breaking Cut of a Subsystem
As pointed out earlier, sudsystems are built
around an underlying operating system, This svlcsystem will

use the primitive operations of the operatineg system to

ee

a .mu“

construct the rectricted eavironment that the user will <ee.
To the overating system (and the sutverter) the subsystem is
nothine more than another program runnine concurrently o2
the system,

Assume a sudsystem is desigred to restrict the
user to performing simple calcualator functions. That is,
the user can type simple mathermatical expressions at the
terminal and the answer will be typed in reply. Any input
other than a valid expression will result in the subsyster
replyine with the message “{nvalid expression, try asain’.
"is is clearly a restricted envirorment. The user does not
kave the abdility to execute programs, or use any of the
other sevices offered unrestricted users.

Fut if the underlving operating system had Dbeen
subjected to <csutversion, the subsystem could bYe eacily
*ypassed btv the user. The method that can be used is sirilar
to the trap door used by the janitor.

The user activates the trap door bdy typing 1in
the trigeser sequence. The trap door is periodically scarnine
the teletype buffer area for the trigger sequence. When the
sequence is recognized dy the trap door the terminal is
removed from the <subsystem environment and glven whatever
control the subverter that inserted the <clandestire ccde

desires.

t. NPS Penetration Case
During the time that this research was teing
carried out, one of the schools computer systems was
subjected to “attack’ by a malicious individual. The system
in question was a PDP-11/50 runnineg under the UNIX operatine
system. This case is & simple example of breakine out of a
subsystem,

The subsystem under consideration was the
‘games’ monitor. This system has several games programs that
came with the system or were written by students as class
projects. The subsystem is ‘constructed’ by having users (rno
password required) that 1log 1in wunder the games user-id
restricted to executine only those oprograms and cormands
that reside in the games directorv. The games option is only
enadled during “off’ processine periods when the system use
i< low. The malicious wuser was familar enough with the
system to ¥now the dialup terminal phone number., It was
apparent that he was familar with the UNIX system., tecause
he wrote a program (the trap dcor) ard inserted it into the
games directory.

The progrem was called “Z¥Y° and it was a ‘C’
lansuage prceram that executed one command laneunaece (called
“shell”) statement. Since this proeram was in the games
directory, the monitor environmert ¢&id not prevent the
execution of the command languaese Statement. This trap door

gave the {inrdividusl all the privileges of an unrestricted

g2

(non-super) user. Ee could (and did) read the password file
for names of legitimate users. He found some users that had
the same password as their name (this example was mentioned
earlier). He was later discovered logged in under <ome of
the legitimate users names, or would respond with cre of
these names when queried online.

Dialup capadilities were eventually restricted
bty a monitor to sSpecially authorized personnel, and the
rysterious “attacker” did not make his presence kncwn again.
Several procedural errors where identified in the course of
the “investigation” and have since bYeen corrected. Among
these were the password assignment procedures (mentioned
earlier) were no longer initialized as the users nrare, and
the restriction of the dialup capatilities. This “attacker’
did not appear to be malevolent in his actions. Fe seemed as
though he was looking for a little ‘free’ computer time. Fut
there is no way to determine this for sure, nor is there a
way to determine what other artifices might still te present
in the system.

¢c. Usines Emitters
Computer <ystems are electromagnetic emitters
like any other piece of electrical equipment. Inforration
can be gathered by monitoring these emanations.
Communication lines and cathode ray tubes are particularly
vulneradble to these techniques [11]. Security personnel are

eenerally aware of this problem [8]. Computer sites can be

83

measured for the amount of emanations present. If they are
sufficienctly low, a site coculd be certified as satisfactory
in this area. Fowever, if there were covert transceivers
imbvedded in the equipments at the factory this
‘certification’ could prove useless. & transceiver that {s
monitoring a data tus could sense a data stream trigger.
Upon activation the transceiver would begin to broadcast the
activity on the data bus at a higher power level than would
be normally present. Since the transceliver was not active
durire the ‘certification” 1its presence would not be
detected. A similar sequence could act as the deactivation
¥ey to stop the transceiver from troadcastins. As one can
see this 1is nothing more than a specialized hardware trap
door.
d. Memory residue

In a resource shared system the allocation of
mempory covld result in the exposure of sensitive information
to unauthorized users. Unless specific actions are taken by
the operating system or the previous user, memory assigned
to a new user program will contain whatever was last placed

in {t.
The ADP Security Manual ([8] addresses the

prodlem:

The O0/S shall ensure that classified material or critical
elements of the system do not remain as accessatrle residue
in memory or on on-line storage devices.

.
S .

This means that the operating system must clear core tefore
it 1is assligned to a program. This mechanism, if subverted,
could be designed to “turn off” by command.

This could prove valuable to the subverter who
has azents that are legitimate users of a system. AS a
ratter of standard procedure the agents could perform the
following actions whenever they are processing jobdbs:

1. program bdegins execution and immediately turmns of?f
the clear core mechanism by activatine an artifice.

2. program waits for sufficient residue to build up 1in
the free core area, and requests additional core for the
next processing step.

3. upon recelvirg the additional core the program dumrps
the contents of the core to a file in his directory for
later review.

4, program turns residue mechanism back on and corpletes
legitimate tasks.

Another problem with memorvy reside arices when a
computer 1s {nvolved in what is commonly called “periods
processing’. A periods processing environment 1is one that
uses the same computer to process information of different
security levels, but at different times.

After each processing period in ore mode,
special procedures are carried out to insure that all traces
of information are removed from the system. This is knowr as

‘color changinz’. This includes removing all tapes, cards,

§5

e o

-~

printouts, riddbons, etc., from the system. The next shift
would drine all the necessary equipment uith ther to do the
same, One of these procedures is, of course, clearing core.
The program used tc ‘clear’ ccre could be one that writes
random patterns into core. This could te be repeated several
times to ensure a good ‘drainwashing’. Assuming the color
change was from classified to ‘unclassified, it would be
possidle to obtain information from the previous processing
period. If the proeram that <cleared core did not write
random patterns 1into core, dut Just encrypted the
information, 1t would DYe undectadle by the operator. A
clandestine process, that runs in the unclassified ©period
could core dump the {information to files for later
decryption.
e. Using Confinement Channels

Confinement channels have traditionally been
thought of as a slow means of extracting information. Eut in
an environment where particular care has bdeen taken to
defend against sudbversion, this method may te the only way
of peainips information. Channels onrn the order of a bit per
second have bheen demonstrated and channels that can pass on
the order of tens of bdits per second have been hypothesized
[22]. The following are a few examples of what form these
channels might take:

1. If the system has interlocks which prevent files from
being opened for writing and reading at the same time, the

86

1
%J
1

i
!

;
A
i
y

the service can leak data {f it is merely allowed to read
files that have been written by its owner. The interlocks
allow a file to simulate a shared bdoolean varibtle which
one program can set and the other can test[16].

2. By varying 1its ratio of computing to input/output or
its paging rate, the service can transmit imforration
wvhich a concurrently running process can receive by
observing the performance of the system. The communication
channel thus established is a nolisy one, but the
techniques of information theory can bde used to devise an
encodineg which will allow the information to get throueh
relladly no matter how small the effects of the service on
system performance are, provided they are not zero. The
data rate of this channel may be vary low, of course [16].

3. An exploitadle path for information flow can te created
between an wuncleared individual accessing the system
during one processing period and the classified
information processed by the system during another
processing period 1if, over time, the same software is
employed in bdoth processing periods. Such a ‘covert
leakapee path’ can effectively negate the necessary
complete isolation tetween processing periods...[23].

Case 1 is very similar to the process—id 1dirnary
channel discussed earlier. But in this case the binary
channel is the interlock. The owner (subverter) knows the
service proeram (which has access to the sensitive data) is
sendine a tirary “1° if the service opens the given file for
readine. This is because he would be prevented from writine
into the file by the interlock. He would be receiving a ‘2°
if he was permitted tc write the file.

Case 2 is similar to the example that measured
the runtime of a program. In this case 1low system
performance means a ‘¢’ and higher system performance a “1°.

Case 3 is an example of passing {nformation
tetween processing periods. Assume that the mrachine in

87

question 1s one that supports memory paging. Also assume
that the programs irn question are reentrant routines. This
means that they would not get swapped out during a page
fault, Just overwritten. Should the proeram be able to
execute in the master mode, 1t could write sensitive
information into unused portions of the code tlock (like the
UNIVAC 112f example). Since the code block was modified the
page swapping routine would swap it out vice overwriting it.
When the next unclassified processing period starts, the
subverter merely reads the data from the code Ylock of the

program.

f. Affecting System Performance
Not all subversion activities would be concerned
with gathering 1information. For some computer systems the
sudverter may only be interested in rendering these systems
ineffective at key times. Tactical or strateglc systems are
examples of where this might be desirabdle.

4 systems design or 1implementation could bde
sudbverted so that its performance may suffer during critical
situations. It is often difficult to test such systems under
critical real world conditions. These systems could meet
performance specifications under simulated situations bdut
prove ineffective in a real world situation.

Triggering of artifices in these systems can be

by external events, Suppose there is a command anrnd control

88

et -

P

system that keeps track of potentially hostile ships. A trap
door entered durine the implementation phase of this
particular system is designed to activate whenever it
detects that a certain ship was reported at a certair
position. When the opposing side decides to start hostile
operations, 1t could sent the designated ship out to the
predeterrined position before the start of hostilities. The
ship could remain at that position long enough to insure
that the intelligence system had time to enter the ship irto
the system. When the trap door recognized the activation key
(ship identification and position) it could cause the system
to eradually deerade in performance until it was
ineffective. The ship would have, 1in effect, “sunk’ the
command and control system from thousands of miles away.
Examples of what an artifice could cause to happen to this
¥ird of system are:

1. cause the system to crash at random intervals,

2. slow down the system performance by randemly clearing

core page usage data, thus causing the system to sSwap

pages in and out of core excessively (thrashing),

3. randomly ignore or lock out the command console.
Activity such as this would render the system unreliable and

create an unwillingness ¢to use {t. Furthermore, systems

~maintenance personnel would make the system unavailatle for

many long hours while looking for a bug that may never de

89

found. Since it was 1installed during the implementation

phase it would exist in all coples of the system code.

D. Retrieving Information

Once information has ©beéen accessed by the methods
outlined previously, the problem of removing the irnforration
from the confines of the security perimeter still remain. As
one might expect, the difficulty of the retrieving process
is directly related to the ‘strength’ of tke security
perimeter. In a relatively open system retrieval might be as
easy as walking out the front door with listings under one’s
arm. In a more restrictive eavironment other methods can te
devised. Ir a multilevel security mode, the unclassified
user 1is frequently not scrutinized; in fact, he might by
using a dialup terminal several miles from the computer
installation.

This discussion will assume that the exercising phase of
subversion has placed the desired informatior in a “safe’

place (i.e., any area that is accessable to the subverter',

1., Retrieving Files

If the interpal protection mechanisms were used to
enforce the security perimeter (as in a multilevel security
system) then the subverter may have a Simple Jjobd of

retrieving the {nformation. Since the security controls were

9¢

DL et B e

Leie meske s eavee e s

e e g P

S S —

circumvented in obdtaining the information, the security

perimeter has been breached and retrieval may only 4{involve
dumping the 1information out in some transportatle form.
However, if this is not the case the {information wmay bde
reviewed by <someone Ddefore it 1is allowed to cross the
security perimeter. In this case the informatior must bde
desguised or perhaps even encrypted.

Irformation can ©be hidden in the header pages or
system jod statistics areas of batch jotr printouts. These

are often 1ignored areas of a listing. These areas could

offer low bdandwidth channels for the information.

Encrypting irformation into statistical tatles or
core dumps can siganificantly increase the volumre of

information that <can be channeled through the <ecurity

verimeter.

2. Retrievine with Fardware devices

i~

] Hardware transmitters can de used to pass informtion

1 ! beyond the security perimeter. These devices can offer

channels of very high bandwidth. A high speed printer that)

had a transmitter imbedded into it durine the 1installatior

{? phase 1is an example. Again the activation key could bde a
sequence of characters in the data stream that turrcs on the
transmitter and a similar sequence to turn it off. ﬁ

An 1irteresting method that could de used for a low

.
. s

tandwidth channel 1is the front panel of the computer

91

.
P

= e dd e

. Ll
R

console, Some irstallations have t®ig glass windows that
define an external security perimeter. A subdverter could
submit an unclassified Job to a system that could serve to
activate a trap door. The sSubverter only need watch the
register 1lights for the infoymation to be flashed to him.
Naturally the normal register lights would be flashing to
rapidly for the subverter to understand them. However the
parity light for the registers could be control im such a
manner that they could send Morse code to the subdbverter. By
havine a program that repeatedly enters even parity or odd
parity values in to & register an information channel could
estabdlished, Furtherrore, the flashing could ©bve recorded

photographically or using vidio tape.

E. CHAPTER SUMMARY

This <chapter has outlined the methodologies of computer
subversion. This sudversion may 1irvolve the organized
efforts of many individuals whose talents could range from a
computer scientist to an unskilled latorer. Sutversion is a
three step process involving the insertion of artifices into
computer system components, exercising them, and retrieving
the resultant {information. The insertion process could be
carried out over the entire life cycle of a computer system,

frem the beginnings of its design through to, and includine,

the the production phase. Once installed these artifices can

92

A

te used to circumvent normal internal <controls c¢f the
computer system for the purpose of accesSine unauthorized
information. Once unauthorized access 1is obtalned, the
subverter need only disguise this information into a form
that will circumvent any external controls that may exist,
thus effecting its retrieval.

Subversion {s <clearly a threat to the security of any
information that relies on a computer system to protect 1it,.

In the next chapter ways of minimizing the rist of

subversion are investigated.

93

Y. MINIMIZING THE RISK OF SURVERSION

Theoretically, there are three ways in whizh sudbversion
can be minimized, and they relate directly to the three
phases of subversion:

1. Prevent the the insertion of all irechanisms that can

be utilized to defeat internal scurity controls, cor

2. Prevent the malicious wuser from exercising ‘these

mechanisms, or

3. Prevent the retrieval of any information gained via

exercising techniques.

Ary one of the three methods mentiored above could
prevent subversior. Fach method will be driefly discussed as
to its merits 1in helping to minimize the threat of

subversion.

A. RESTRICTING INSERTION OPPORTUNITIES

Preventine the subverter from inserting artifices may cot
be a simple task, but it 1is essential to the ultimate
solution to the problem of sudbversion. It has Yteen
demonstrated how subversion can occur over the entire 1life
cycle of a computer system. To prevent the irsertion of
artifices implies that the sudverter must dbe jprevented the

opportunity to access system components at any point during

34

this 1ife cycle. Clearly, system components that affect the

security of the system must be afforded l1ifetime protection.

1. Lifetime Protection

For 1lifetime protection to be effective it must

involve such measures as:

1. Appropriate security <clearances for any personnel

involved 1in the various stages of the computer svstems

1ife cycle (2].

2. Sufficient ‘hardening” of manufacturine and

developrent oprogramming sites to prevent sudversicn bdy

external forces [(2].

3. Proper protection of all system components from

access by malicious elements for the entire systems life

cycle.
Without the ad»ove measures, proper assurances would not
exist concernines the safe history of system ccmpoenents. That
is, whether or not malicious elements have had the
opportunity to suvbvert the components. The only appropriate
course of action would de to not allew these componerts to
participate in the oprotection of {information. This 1is
hecause the very nature of subverslion 1is covert, and |t
would bde virtually impossible to detect if it had occvred in

a system after the fact. If any period during the 1lifetime

95

NAVAL POSTGRADUATE SCHOOL MONTEREY CA
SUBVERSION: THE NEGLECTED ASPECT OF COMPUTER SECURITY, (U}

JUN 80 P A MYERS

INCLASSIFIED N

EREEEE

D=A089 935

o
== & 2

eI 20

o, © e

I

=

Jizs s e

MREROCOPY RESOLUTION TEST CHART f
NATIONAL RURLAU OF STANDARDS 1963 A

e’

At bt Sl ok A T r——— R L N

B il e A
PO i e,

of a computer system has a lapse in protection it must de
similarly assumed that these components are unreliabdle <¢from

that point forward.

2. Appropriate Protection Policies

The abdove measures should de viewed in the proper
E | perspective. W#hat is meant Yy “sufficient hardening’ of
% { development sites, or ‘proper protection’ of system
w components?

Just because a computer system will be involved 1in
the protection of classified information does not mean that

the system components are themselves inherently classified.

It would therefore not be appropriate (even
counterproductive) to demand that these system comporents bde

protected in the same way as classified materials. For

i instance tkere would not bde any reason to prevent copies of
programs from belng seen. The central issue is not the
content of the programs, but restricting access (for
modification) to the particular copies of those programs
that will be used to enforce protection in the sSystem.

! A more appropriate protection policy is needed. In

essence this policy should outline a strategy of “look, bdut
i : do mnot touch’, For instance, in the area of development or

¥ ' ranufacturing sites, hardening does not have to de concerned

vith emanations where the i{s no sensitive information

96

]

L3
"N e e .

e e e Aot e AR

45 At i N IR W > AL s X S 10 it i Gy Mk s b L D M A LA WA 2 sl e LT 1 et

contained in the operating system code or hardware equipment
at this point in the 1ife cycle.

Similarly, the proper protection of system
components would dictate that they be protected frorm
malicious elements having access. Previous chapters have
outlined in detail that there are many ways that a Subdverter
can access system components. Therefore, countermeasures to
these access routes must bte devised. But restricted access
need only apply to those particular programs and equipments
actually involved in the protection of information. Copies
of the programs could conceivably bde made availabdvle to
anyone. Rowever, those particular components (programs or
hardvare) that wjill actually te used in the protection of
information need to bde clearly distinguished and protected.
Specifically, those particular components involved in the
protection of information should be labeled and protected
from access at the same level as the information they are
expected to protect.

One of the bdaslic principals of subdversiorn {irvolves
the {ntroduction of clandestine mechanisms into Ssecurity
related system components. However current DOD security
program regulations and directives (7,8,24] are primarily
concerned with the REMOVAL of sensitive materials from a
secure enviromment. These directives must bde changed to
ensure that security not de compromised dy the INTRODUCTION

of materials as vwell,

97

TN ——r

VAT U, VT N SN N VR O LNV Y s s i v e

o 0 1Y 2,

e e S mmm—. e

WY ammaa—— g .

P i i B Al . TR AR 5, - e 0 O L e SN 51 T

B. RESTRICTING EXERCISING OPPORTUNITIES

To prevent the exercising of mechanisms that could defeat
internal system controls, one could:

1. Find and eliminate all such mechanisms, or

2. Somehov guarantee that they could not be employed.
Poth these “solutions’ when applied to current operating
systems are, in any practical sense, infeasibdle.

Both these “solutions’ assume that such mechanisms can
be identified in the first place. To do do this would
require a means of defermining that every program executed
on a machine is “safe’., But chapter II brought out the fact
that there is no general solution to the safety problem [4].
A simple example of this is a Trojan horse. As previously
indicated, the user willingly invokes a malicious program
and, in doing so, gives it ‘permission’ to perform its
covert functions. Not only will most computer systems not
prevent the employmeant of such a program, it will
unknowingly aid in its endeavors.

Finally, one must consider the system foible (desien and
implerentation errors). Recall that these are mechanisms
that can also de of use to the sudbverter. To presume that
8ll such foidles are identified and eliminated is to imply
tkat the perfect design vas flavlessly implemented. This {is
a higkly wunlikely prospect. Chapter II offered ample

testirony to the fact that current technoloey is a long vwvay

98

e d

B s s

T A gy

from the perfect implementation of something the size of a
modern operating system. If ‘accidents’ such as system
foidles are daifficult to find, then the deliterately
obscured artifice would de virtually impossible to detect.
Attempting to prevent the exercising of artifices is a

futile approach.

C. RESTRICTING THE RETRIEVAL OF INFORMATION

Restricting the retrieval of informationm must presently
bYe considered the last defense against subdbversion. This is
obdbvious decause, as pointed out earlier:

1. No assurances exist as to the absence of past

sudversive activities onm system components, therefore

sudbversion of the components must be assumed.

2. There exists no general method that can prevent the

exercising of clandestine mechanisms in a computer

system,

Ultimately, preventing the retrieval of unauthorized
information from a system will lie with the effectiveress of
the security perimeter. If the sudbverter can cross this
defensive barrier then he has, in effect, retrieved the
information. One must clearly delineate wvhere this perimeter
lies, Unless it is clearly delineated, one cannot determine
the effectiveness of those mechanisrs desiznated to enforce
it.

99

T

1. Delineating the Internal Security Perimeter

When the security perimeter of a computer system {s
enforced dy strictly external means, the system is said to
be operating in the dedicated security mode [21,22]. The
security perimeter is clearly defined as those physical
measures (such as guards, etc.) required to iasure that no
uvnauthorized information will leave the Ddoundries of the
perimeter. 411 users, equipment, and {pformation reside
within this perimeter. The effectiveness of this kind of
security perimeter 1is easily determined as it is dased on
estadlished practices that are not unigque to computer
security. The dedicated mode of operation is the resuvlt of
the need to restrict retrieval of {information. This tis
certainly a <ound technique bdut it does not solve the
classical computer security problem. That is, the need to
reliadbly share information of varying degrees of sensitivity
among users of varying degrees of trustworthiness.

In the case of the computer that is used in the
multilevel security (MLS) mode, the security perimeter 1s
less clear. In this mode of operation the security perimeter
is enforced by the {internal protection mechanisms of the
computer system. This is Dbecause personnel that are not
cleared for the highest 1level of information contained
within the system are alloved some form of access to the
system. The only bdarrier bdetveen the uncleared user and the

100

information that he is not authorized to access is the

internal protection mechanisms of the computer system.
Therefore it is imperative that this internal bdarrier (i.e.,
security perimeter) be well defined within the system.

The difficultly with contemporary computer systems
is that control of these internal protection mechanisms is
distriduted throughout the entire operating system. There is
no clear distinction as to which parts of the system enforce
the security perimeter and which 4o not. AS a result of this
vagueness, anry attempt to evaluate the effectiveness of a
computer system to enforce a security perimeter is doomed to
the ad-hoc approaches such as those outlined in Chapter II.
And these are notoriously ineffective.

So called “trusted’ subsystems compound the problem
by attempting to ‘estadlish’ a security perimeter with a
special program. But ultimately a sudsystem will use the
very same protection mechanism that the underlying operating
system uses. It should be clear dy now, that in the face of
subversion the subsystem is not the least bdit more secure
than the underlying operating system and other security
related components that it emdraces.

It 1s clearly essential that any internal protection
mechanism de defined ia such a wvay that it’°s effectiveness

can bde demonstrated. One such mechanism is the Security

Kernel, Schell (6] states:

STTCE

- mveminre - s—

T A ot i -

o= —— -

DR -~
"“L"

The chief distinguishing characteristic (from whence 1its
name) of the security kernel concept 1s that a kernel
represents a distinct internal security perimeter. In
particular, that portion of the system responsidle for
maintaining internal security is reduced from essentially
the entire computer to principally the kernel.

It is instructive to see how this mechanism could be used to
prevent the subdbverter from retrieving urauthorized

information.

2. Security Kernel Concept

In a system that is based on & security Kkernel,
protection is realized within the computer system by the
verifiadle implementation of a mathematical model of
information security. This model iS based on an abdstract
representation o2 security called the reference monitor [%5]).
The reference monitor descrides a rechanism for controlling
the access privileges within the system (see references
{2,8] for further details on the monitor). The
implementation of this mechanism is the security kernel.

The security kernel is designed to de a verifiadle
sutset of security related operating system functions. These
functions form an interface (i.e., a security pertweter)
tetveen the user and the information. If the security kernel
is {mplemented correctly, its use will suarantee that the

information in the system will de protected in accordance

102

e

T

ro APPSR LTINS PSR R < T

B Y

with the security policy that is outlined in the security
model. Essential design requirements of the security kernel
are:

1. It must be tamper proof.

2. It must always bde invoked.

3. It must be small enouzh to be subject to analysis and

tests, the completeness of which can dbe assured.

The Multics Security Evaluation [1¢] poinrts out how
comtemporary systems have bYeen unabdle to meet these
criteria:

The stated design goals of contemporary systems such as
GCOS or 0S/360 are to meet the first requirement (albeit
unsuccessfully). The second reguirement is generally not
met by contemporary systems since they usually include
‘bypasses” to permit special software to operate or mst
suspend the reference monitor to provide addressability
for the operating system in exercising 1{ts service
functions. The best known of these is the dypass in 0S/369
for the IBM supplied service aid, IMASPZAP (SUPFRZA®).
Finally and most important, curreat operating systems are
s0 larese, S0 complex, and So monolithic that one cannot
begin to attempt a formal proof of certification of their
correct implementation.

Two basic precepts that are enforced in the security
kernel are:

1, The simple security condition- This means that a user
or his program is mot allowved access to information for
vhich he has no authorization.

2. Confinement property- if a user or kis prograr has
read access to information at one security level, say

secret, then he cannot have simultaneous write access to

103

-e__, .

B LR LT SRS

a file that exists at a lower security level (i.e.,
unclassified). This prevents what 1{is called a ‘write
down”.
These simile precepts and other supporting strict rules of
the security kernel are the dasis dy which the subverter is
prevented from retrieving unauthorized information.

In the case of the Trojan horse, the simple security
condition and the confinement property can render such a
clandestine mechanism useless. The bdasic concept dehind a
Trojan horse presumes that it will bde allowed 1into an
environment that contains sensitive informatior. Once in
this enviroanment the covert function attempts to obdtain
sensitive information and place (write) it in area that will
be accessidle to a sudverter. The security kerrnel, through
the confinement property, will not permit a ‘write down”’.
That 1is, it will oprevent the covert -function from
‘declassifyine’ the informatioan dy not allowing it to Ye
copied to anywvhere dut another classified file. Assuming the
subverter 1is an unclassified user, the simple Security
condition will prevent him from accessing any files gained
through this method bYecause he will not have the proper

clearance to to read the file provided dy the Trojan horse.
D, CRAPTER SUMMARY

Security kernel technology directly addresses the

prodlem of minimizing sudbversion. It offers a dasic design

1¢4

e -

. ——

e

-

Elade 3 “.;.:'-" - ..

N —

LT U

that can bYe proven effective. Throusgh this verifiadle
protection mechanism a distinct internal security perimeter
can e relied on to prevent the retrieval of unautkorized
information by maliclous elements.

But security kernel technology is not immune to to the
subversive techniques outlined in this thesis. Ir fact, it
might be more susceptidle to subversion due to the high
probadtility that such a system will te used in sensitive
areas. Lifetime protection 1is essential to any mechanisr
that vill be employed in the protection 5f information.

Thé security kernel clearly defines the security related
mechanism of a computer system, Because of this it 1is the
only part of a computer operating system that reed bde
offered lifetime protection. Providing protection for the
security kernel {s a far more practical an {idea than
requiring the lifetime orotection of an entire operatine
system and numerous privileged utilities, Its small size and
clear ©boundaries offer a secure foundation from which to
duild any operating system. But without lifetime protection
from malicious access, trere would dbe no assurances as to
the integrity of components involved {n the protection of

information and sudbversion must be assumed.

108

VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis offers a detailed examination of an asgect

of the computer Security problem known as subversioa. It 1is

not the ©purpose of this document to provide a handdoock of

sudbversion for subverters; they do not need one! This thesis
does offer awvareness to those who must deal with the
computer security problem. People like ALP administrators,
; ADP security cfficers, system designers, and others involved
in the decision making process must understand subversion if
they are to effectively combat it. It 1is difficult to make
intellieent decisions conéerning the security of inforration

in computer syvstems unless one wunderstands the possibdle

extent of the vulnerabdilities that could exist in ther.
The first part of this thesis identified several probdlenm

areas in computer security. One of these areas involve a

lack of a coherent policy concerning the exact role that

I g

:
E } computers should play in the protection of imformation. This
l | in turn has 1led to a rellance on 1nadequate internal
! mechanisms, and false assurances as to their effectiveness.
: All these problem areas play a role in the success of
subversion.
' . Irportant distinrctions have bYdeen made btetween the
current conception of computer penetration 4amd that of

sudbversion. The penetrator is Dbdasically an amateur that

1¢6

sttt st 20, c....cndumel Sk oot et Wi, o o

exploits system desien and 4{mplementation errors to gain
control of & system. Subversion on the other hand irnvolves
the organized efforts of several individuals, some of whom

are highly competent at the subversion process. The

subversion process 1involves the use of clandestine
mechanisms called artifices. Principal among these artifices
are trap doors and trojan horses. By constructing and
insertineg these mechanisms 1into computer systems the
subverter creates a safe environment which can be used to
exploit a computer system at will.

The three phases of sudversion are the inserting of

artifices, the exercising of them, and the retrieval of the

{

1
resultant unauthorized information. Central to the there of
subversion 1s the 1insertion of artifices over the entire

lifecycle of a computer system. This can bYe done Ddecause

) computer system components that would be involved in the

protection of information do not receive adequate protection

! against subdversive activities durine their lifetime.
i Sudversion is a clear threat to the security of any
{ computer system i{avolved in the protection of information.

: This threat must be minimized dbefore ccmputer systems can de

A L e

relied on to adequately protect information. Until such a
l 5 time, no computer system should bve wused as a means to
g protect information. So-called “trusted’ subsystems are no
| exception. They suffer from the same risk of subdversion as

any other system. The problem of ‘trusted’ subsystems {s

1e7

¢ em—

e At e AR o 855

e B 1

-~

compounded by the fact that thev are bduilt on an underlying
operating system that 1is essentially unsecureadle. These
systems must be considered particularly dangerous to use
because they lull the user into a false sense of security.

Minimizing the threat of sutversion is a twofold
process. First, adequate 1lifeiime protectiorn must bde
afforded to all security related componeats that will bde
involved 1in the protection of information. The integrity of
security related components cannot de assured without this
protection.

Second, the application of adequate technolosy as
exemplified by the security kernel concept must te
incorporated 1in the design of secure systems. Withcut this
verifiable design, the effectiveness of the oprotection
mechanism cannot be reliably determined. Unless tiese
essential requirements are met, there will e no such thing

as a secure computing system.

108

1e.

LIST OF REFERENCES

Consensus Report, Processors, Operating Systems and
Nearby Peripherals, Theodore M, P, lee (Chairman),
AFIPS Conference Proceedings, 1979 National Computer
Conference, June 4-7, 1979,

USAF Electrorics Systems Division Report ESD-TR-72-51,
Vol. I, Computer Security Technoloegy Planning Study,
Octoter 1972,

Gat, Isreal, Security Aspects of Operating Systems,
Second Jerusalem Conference on Information Technology.
1974.

Farrison, M.A. Ruzzo, ¥.L., Ullman, J.D., “"Protection
in Operating Systems , Communications of the ACM,
Vol. 19, no. 8, August 1976.

Schell, Roger R.,ILtCol., USAF, Security Kernels: A
Methodical Design of System Security ,USE Inc., Spring
Conference, March 1979.

Schell, Roger R.,ItCol., USAF, " Computer Security, The
Achilles Feel of the Electromic Air Force , Air
Tniversity Review, Vol.XXX no. 2, January-Feduary 1979.

Department of Defense Directive 5200.28 "Security
Requirements for Automatic Data Processine (ADP)
Sfystems , 18 Decemder 1972.

Department of Defense Manual 5200.26M “Techniques and
Procedures for Implementing, Peactivatine, Testine,and
Evaluatirg Secure Resource-sharing ADP Svstems’,
January 1973,

Nivaldil, G.H., "Proposed Technical Evaluation Criteria
For Trusted Computer Systems”, Mitre Corp., no.M?79-225
Bedford, Mass., 25 October 1979.

USAF Electonics Systems Division Report ESD-TR-74-103,
Vol. II, Multics Security Evaluation: Vulnerabdility
Analysis, dy Paul A. Kruger, 2Lt., USAF and FKoger R.
Schell, Major, USAF, June 1974.

-y #e

— P e -

11.

12.

13.

14.

15.

16.

17.

18.

19.

2¢.

21.

22.

Lackey, R.D., "Penetration of Computer Systems, an
Overview , Honeywell Computer Journal, Vol. &, no. 2
1974,

Comptroller General of the United States, Report to the
Congress. Computer Related Crimes in Federal Programs,
General Accountins Office (GAO), April 27, 1976.

Stanford Research Institute Report PR-231 320, Computer
Abuse, by Donn B. Parker, Susan B, Nycum, and Stephen
S. Cura, Novemdber 1973.

Dennirg, Peter J. and Dorothy E. "Data Security”
Computine Surveys, Vol. II no. 3 September 1979.

Rome Air Development Center Report RADC ~-TR-74-137,
Emulating a Foneywell 6182 Computer System,
M tre Corporation June 1974,

Lampson, D.W., "A Note on the Confinement Prodler”,
Communications of the ACM, Vol. 16 no. 1¢ Octoder 1973.

Naval Research latoratory Memorandum Report 2821
Subversion of a Secure Operating System, bdy Lavid
Stryker June 1974,

USAF Electronics Systems Division Report ESD-TR-74-193,
Vol. III, Multics Security Evaluation: Password and
File Encryption Techniques by Lt. Peter J. Lownev,
USAF, June 1977,

Attanasio, C.R., Markxetien, P.¥., and Phillips, P.J.,
Penetratine an Operating System: A Study of VM/37¢
Integrity , IBM Systems Journal, Vol. 15 no. 1, 1976.

Goheen, S.M., and Fiske, R.S., 05/36¢ Computer Security
Penetration Exercise, Mitre Corp., Bedford Mass.
Octoder 1372,

USAF Electronic Systems Division Report ESD-TR-75-69, 1
The TCesign and Specification of a Security Kernel

for the PDP-11/4% By W.L. Schiller (Mitre Corp).
May 1975.

Lipner, Steven , "A Comment on the Confinement Problem”
Mitre Corporation, Bedford Mass.

110 *

[

23. Department of Defense Industrial Security Newsletter
no. €01-1, 28 March 198¢@.

24, Department of Defense Information Security Program
Regulation 5200.1R, Decemder 1978.

25. Information Sciences Institute Report ISI/SR-7€-13,
Protection Analysis: Final Report, by Richard Risbey
anrd Dennis Hollinmgworth, May 1378,

INITIAL DISTRIBUTION LIST

No. Copiles

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 2142 2
Naval Postgraduate School
Monterey, Californta 93940

3. LtCol. Roger R, Schell Code 525} 5
Devpartrent of Computer Science
Naval Posteraduate School
Monterey, California 939402

4, Asst. Prof. Douglas Smith Code 52Sc 1
Department of Computer Science
Naval Postgraduate School
Moneterey, California 93940

5. Lt. Philip A. Myers, USN %
Naval Data Automation Command
Vashinzton Navy Yard
Washington, D.C. 20374

i ‘ 6. ICDR. S.L. Reitz 1
» NAVAL ST®A SYSTEMS COMMAND

: Technical Pepresentive
1 St. Paul, Minnesota 30e45

7. Capt., L.A, Talmage 1
Manpower Utilization Unit
Puildine 20€9
MCDEC, Ouantico, Va. 2213¢

i €. Capt. John Ross, USA?F 1
[582 AVACW/ADM
l Tinker AFB, Oklahoma 73145

9, Ms, Cheron Vail, Code 302 1
NAVPERSRANLCEN
San Diego, California 921%2

. - ——
-

16. Lt. M.L. Maurer, USN 1
F . . CARGED Five
‘ P.P.0. fan Yrancisco, California 966¢1

112 4

-e

-

11.

12.

Lt, ¥.J. vasson, USN

Naval Electronics Systems Command
Headquarters, PME 124

Washington, D.C. 20360

Tepartment Chairman, Code 52
Department of Computer Science
Naval Posteraduate School
Monterey, California 93940

13.1t. Alan Gary, USN

14.

15.

16.

17.

Operations Department
U0.5.S. Nimitz (CYN 68)
F.P.0. Nev York, Nev York 09542

ILCPR. Edmund Moore, USN

Naval Blectronics Systems Command
Headquarters, PMF 197

Washington, D.C. 22360

Lt. #William C. Hess, USN

Naval Electronics Systems Command
Headquarters

Washington, D.C. 20360

LCDR. F. Johnson, Code 2371
Computer Technology Curricular Office
Naval PosStgraduate School

onterey, California 93940
Mr. Carl Landwvebr

Code 7522

Naval Research ladoratory
Washington, D.C. 20375

113

